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1 Introduction

The Riemann zeta function is the unique analytic continuation of the function
ζ(s) =

∑
n≥1

1
ns (a priori defined only on s ∈ R × iR+) to the whole complex

plane.
This zeta function is one of the most (in)famous functions in mathematics,

being the subject of the well-known Riemann hypothesis, one of the Millen-
nium Problems. The zeta function pops up in many places, notably number
theory.

Example 1.1 ([Sch76]). The prime number theorem says that

π(x) ∼ li(x) =

∫ x

0

dt

ln(t)
∼ x

ln(x)

where π(x) is the prime counting function. Finding asymptotic behaviour of
π(x)− li(x) is harder. It is already known that

|π(x)− li(x)| = O(xβlog(x))

for some unknown 1
2 ≤ β ≤ 1. If the Riemann hypothesis is true then we have

that

|π(x)− li(x)| = O(x
1
2 log(x)).

As this function is so important, it is natural to ask for properties of it. Of
interest to us is the (ir)rationality of ζ(k) for k ∈ N. Using analytic methods it
is relatively straightforward to prove the following result.

Proposition 1.2 (Euler).

ζ(2k) ∈ π2kQ ⊊ R \Q.

One might expect us to be able to show that ζ(2k + 1) ∈ π2k+1Q, but this
has proven much harder. Very little progress was made until 1978, when Apery
proved the following slightly weaker result.

Theorem 1.3 (Apery).

ζ(3) ∈ R \Q.

It is still unknown if ζ(3) ∈ π3Q.
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Apery’s proof of the irrationality of this special value of ζ(2k+1) gave hope
to the extending the methods used to other values of ζ(k). We will explain the
proof of this result, and hopefully give some insight into why it has not been
extended.

2 Apery’s Proof

Apery’s proof is quite bizarre and seems nearly magical; Poorten describes how
“skepticism was general” during the initial presentation, and Beukers describes
how “[his] surprise became excitement with Apery’s announcement of his proof
of ζ(3) ∈ R \ Q and ended in utter confusion after hearing his famous lecture”
[Beu]. This is largely due to the strange methods and hard-to-see claims pre-
sented at each step. We will go over the proof, explaining details that are glossed
over in Poorten’s article on the subject.

We separate this proof into several steps. First we will introduce a result
that will give us the irrationality of ζ(3), then construct a multivariate sequence
that almost satisfies our conditions, and finally tweak our sequence to make it
valid.

2.1 An irrationality Criterion

We first note a result on the irrationality of real numbers, heuristically saying “it
is impossible to approximate a rational number too well with other rationals”.

Lemma 2.1 (Dirichlet Irrationality Criterion). Let α ∈ R. If there exists a
δ > 0 and a sequence α ̸= pn

qn
∈ Q with pn

qn
→ α such that∣∣∣∣α− pn

qn

∣∣∣∣ < 1

q1+δ
n

for all n > N

for some N ∈ N then α ∈ R \Q.

Proof. Fix δ > 0. We prove this using the contrapositive. Now let a
b and p

q be

some rational numbers with p
q ̸= a

b . Then we remark that∣∣∣∣ab − p

q

∣∣∣∣ = |aq − bp|
|bq|

≥ 1

|bq|
.

Thus for any r ∈ Q we have that∣∣∣∣r − p

q

∣∣∣∣ ≥ 1

qq0

for some fixed q0 that depends on r. For all qδ > q0 we have that∣∣∣∣r − p

q

∣∣∣∣ ≥ 1

qq0
>

1

q1+δ
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and so for a fixed r ∈ Q there are finitely many choices of q (all q < q
1/δ
0 ) such

that ∣∣∣∣r − p

q

∣∣∣∣ < 1

q1+δ
. (1)

Noting that for the above to hold we must have that p ∈ [qr−q−δ, qr+q−δ]∩Z,
it follows that there are at most finitely many p

q ∈ Q such that (1) holds. Thus

if there exists a sequence pn

qn
satisfying the conditions of the theorem there are

infinitely many rationals satisfying (1), and so we must have that α ∈ R\Q.

Thus to show a number α is irrational it suffices to find some sequence
rn = pn

qn
tending to α such that the error ϵn = |α− rn| shrinks faster than the

denominator q−1−δ
n shrinks.

2.2 Designing a Valid Sequence

We now start on a quest to find a suitable sequence. The first obvious candidate
is the sequence of partial sums of ζ(3),

rn =

n∑
k=1

1

k3
. (2)

We can write ∣∣∣∣∣∣ζ(3)−
n∑

m=1

1

m3

∣∣∣∣∣∣ =
∞∑

m=n+1

1

m3
= ϵn

Now the denominator of rn grows like lcm(1, ..., n)3, and we have that

1

2(n− 1)2
=

∫ ∞

n−1

dx

x3
>

∞∑
m=n

1

m3
>

∫ ∞

n

dx

x3
=

1

2n2

and so ϵn shrinks like 1
n2 . We will show that roughly lcm(1, ..., n) ∼ en, and

thus we have that

ϵn > q−1−δ
n

for sufficiently large n, showing that this sequence does not converge fast enough
to satisfy our requirements.

Lemma 2.2. lcm(1, ..., n) ∼ en.

Sketch. We first note that for each prime p ≤ n then the highest factor of p
that divides lcm(1, ..., n) is the highest factor of p that occurs in the numbers
1, ..., n. This is given by ⌊logp(n)⌋ = ⌊ lnn

ln p ⌋. Then we can write

lcm(1, ..., n) =
∏
p≤n

p⌊
lnn
ln p ⌋.
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Figure 1: Error and denominator for sequence (2)

Taking logarithms of both sides gives

ln lcm(1, ..., n) =
∏
p≤n

⌊
lnn

ln p

⌋
ln p

∼
∏
p≤n

lnn

ln p
ln p

=
∏
p≤n

lnn

= lnn ·
∑
p≤n

1

= lnn · π(n)

where π(n) is the prime counting function. By the prime number theorem we
have that lnn · π(n) ∼ n and so

lcm(1, ..., n) ∼ en.

We have thus shown that our candidate sequence rn does not converge fast
enough for us. The disparity is displayed in figure 1. We require the inverse
error to asymptotically be greater than the denominator, but clearly this will
not happen.

Indeed we must find a sequence that converges faster to ζ(3) while having
relatively smaller denominators.
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2.3 A Combinatorial Identity

In order to find a sequence that suits our purposes we turn to combinatorial
identities for ζ(3). In particular Apery proved the identity

ζ(3) =
5

2

∑
n≥1

(−1)n−1

n3
(
2n
n

) . (3)

The partial sums (denoted rn) of this series also give a valid candidate for a
valid sequence. Indeed we have (applying the fact that

(
2n
n

)
∼ n−1/24n from

class) that

∣∣ζ(3)− rn
∣∣ = 5

2

∑
k≥n+1

(−1)k−1

k3
(
2k
k

)
≤ 5

2

1(
2n
n

) ∑
k≥n+1

1

k3

∼ 5

2

n1/2

4n
1

n2

=
5

2
n−3/24−n

and so the error shrinks exponentially (instead of quadratically as before)! This
sequence still does not satisfy our conditions. Indeed the denominator grows
faster than lcm(1, ..., n)3 ∼ e3n; since e3 > 4, the denominator term q−1−δ

n

will shrink faster than ϵn. Nevertheless this direction is quite promising – our
convergence has “sped up” in the right way, making the inverse error exponential
instead of quadratic.

Instead we will modify (3) to try to get something that will work. We define
the multivariate sequence

cn,k =

n∑
i=1

1

i3
+

k∑
j=1

(−1)j−1

2j3
(
n
j

)(
n+j
j

) . (4)

This sequence, defined on the half-orthant defined by {(n, k) ∈ N2 | k ≤ n},
is akin to a combined version of (2) and (3). It will turn out that this sequence
will have properties similar to the fast convergence of (3), while the multi-
dimensionality will be a useful tool to further tweak the sequence.

3 Behaviour of cn,k

Having defined cn,k we give some important properties of it. We start by noting
that cn,k is a rational number, however the exact form of the denominator is
hard to pin down. The following lemma describes the nature of the denominator
of cn,k.
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Lemma 3.1.

2 lcm(1, ..., n)3
(
n+ k

k

)
cn,k ∈ Z.

The proof of this lemma is discussed in detail by Poorten in [PA79] and will
prove useful later.

Lemma 3.2. For any fixed k = k0 we have that

cn,k0
→ ζ(3)

as n → ∞.

Proof. We have that

∣∣ζ(3)− cn,k0

∣∣ =
∣∣∣∣∣∣

∞∑
i=n+1

1

i3
−

k0∑
j=1

(−1)j−1

2j3
(
n
j

)(
n+j
j

)
∣∣∣∣∣∣

≤
∞∑

i=n+1

1

i3
+

k0∑
j=1

1

2j3
(
n
j

)(
n+j
j

) .
We have already shown that the first term goes to 0 like 1

n2 , and so it suffices
to show that the second term goes to 0 as well. But we have that for 1 ≤ j ≤ n

2j3
(
n

j

)(
n+ j

j

)
≥ n2

for large enough n, and so

k0∑
j=1

1

2j3
(
n
j

)(
n+j
j

) ≤
k0∑
j=1

1

n2
≤ 1

n
.

where the last inequality uses k0 ≤ n. This shows that cn,k0 → ζ(3).

Proposition 3.3. For any direction r = (rn, rk) ∈ N2 such that (rn, rk) ∈
{(n, k) ∈ N2 | k ≤ n} we have that

cnr → ζ(3).

Proof. This is a result of the fact that the convergence of cn,k to ζ(3) does not
depend on k, as shown in the proof of lemma 3.2. Strictly speaking we have
that ∣∣ζ(3)− cnr

∣∣ ≤ 2

nrn
≤ 2

n

for large enough n.

This proposition gives us an assortment of diagonal sequences that converge
to ζ(3). Note that the diagonal sequence cn,0 is the partial sums sequence given
in (2). When investigating the error and denominators of this sequence it was
found that the error decreased not nearly fast enough; let us instead check
different diagonals of cn,k to see if they are promising.
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3.1 (1, 1) Diagonal

We investigate the (1, 1) direction of cn,k to see if it satisfies our conditions. We
first present two computational lemmas.

Remark 3.4. We have that

cn,k − cn,k−1 =
(−1)k−1(k!)2(n− k)!

2k3(n+ k)!
(5)

This follows from writing the definition for cn,k down.

Remark 3.5. We have that

cn,k − cn−1,k =
(−1)kk!2(n− k − 1)!

n2(n+ k)!
. (6)

Proof. This is described in [PA79] with typographical errors, which will be cor-
rected here. From the definition of cn,k we have that

cn,k − cn−1,k =
1

n3
+

k∑
m=1

(−1)m−1

2m3

[
1(

n
m

)(
n+m
m

) − 1(
n−1
m

)(
n+m−1

m

)]

=
1

n3
+

k∑
m=1

(−1)m−1

2m3

[
m!2(n−m)!

(n+m)!
− m!2(n−m− 1)!

(n+m− 1)!

]

=
1

n3
+

k∑
m=1

(−1)m−1(m− 1)!2(n−m− 1)!

2m(n+m)!

[
(n−m)− (n+m)

]
=

1

n3
+

k∑
m=1

(−1)m(m− 1)!2(n−m− 1)!

(n+m)!

=
1

n3
+

k∑
m=1

[
(−1)mm!2(n−m− 1)!

n2(n+m)!

]
−

[
(−1)m−1(m− 1)!2(n−m)!

n2(n+m− 1)!

]

=
1

n3
+

(−1)kk!2(n− k − 1)!

n2(n+ k)!
− 1

n3

=
(−1)kk!2(n− k − 1)!

n2(n+ k)!
.

We can thus write

cn,n − cn−1,n−1 = (cn,n − cn,n−1) + (cn,n−1 − cn−1,n−1)

=
(−1)n−1(n!)2

2n3(2n)!
+

(−1)n−1(n− 1)!2

n2(2n− 1)!

=
5

2

(−1)n−1

n3
(
2n
n

)
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Figure 2: Error and denom for (4) in direction (1, 1)

and so recalling our work on (3)

∣∣ζ(3)− cn,n
∣∣ = 5

2

∑
k≥n+1

(−1)k−1

k3
(
2k
k

) .

We have already shown that the exponential growth of this error is 4−n, while
the denominator grows like (e34)n, and so this diagonal still does not work.

Note that the sequence cn,n is designed such that the error is the tail end
of the partial sums of the identity (3). This is no accident – it was defined in
such a way as to maintain the rate of convergence of (3), while also allowing
for manipulation dependent on the fact that it is a multidimensional sequence.
As with (2) we capture the behaviour of cn,k in figure 2. One can see that the
inverse error is exponential, but still grows slower than the denominator.

3.2 (2, 1) Diagonal

We can investigate the (2, 1) direction of cn,k to see if it satisfies our conditions.
By applying (5) and (6) we can write

c2n,n − c2n−2,n−1 = (c2n,n − c2n,n−1)

+ (c2n,n−1 − c2n−1,n−1)

+ (c2n−1,n−1 − c2n−2,n−1)

=
(−1)n(n+ 1)!(n− 1)!5n!3

16(n− 1)6n2(3n)!(3n− 1)!(3n− 2)!
.

It is no longer possible to represent this in terms of something like (3), as with
the (1, 1) direction. We can however numerically estimate this, displayed in
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Figure 3: Error and denom for (4) in direction (2, 1)

figure 3 (we use exp(6n) to compare, as lcm(1, ..., 2n)3 ∼ e6n). See figures 5
and 6 for the directions (5, 1) and (10, 1) respectively. Numerically we see that
there is little hope that c2n,n satisfies our requirements. In light of this we now
turn to Apery’s construction of a valid sequence.

4 Apery’s Construction

We have seen evidence that cn,k does not converge fast enough for us. To remedy
this, we transform cn,k. Define

d
(0)
n,k =

(
n+ k

k

)
cn,k,

w
(0)
n,k =

(
n+ k

k

)
.
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Note that
d
(0)
n,k

w
(0)
n,k

= cn,k and thus the quotient converges to ζ(3) along any diago-

nal. Now define successive transformations

d
(1)
n,k = d

(0)
n,n−k

d
(2)
n,k =

(
n
k

)
d
(1)
n,k

d
(3)
n,k =

k∑
l=0

(
k
l

)
d
(2)
n,l

d
(4)
n,k =

(
n
k

)
d
(3)
n,k

d
(5)
n,k =

k∑
l=0

(
k
l

)
d
(4)
n,l

w
(1)
n,k = w

(0)
n,n−k

w
(2)
n,k =

(
n
k

)
w

(1)
n,k

w
(3)
n,k =

k∑
l=0

(
k
l

)
w

(2)
n,l

w
(4)
n,k =

(
n
k

)
w

(3)
n,k

w
(5)
n,k =

k∑
l=0

(
k
l

)
w

(4)
n,l

This appears quite strange, but turns out to accelerate the convergence of

cn,k. It is non-obvious but true that
d
(i)
n,k

w
(i)
n,k

converges to ζ(3) along any diagonal.

Lemma 4.1. For any direction r ∈ {(n, k) ∈ N2 | k ≤ n} and any 0 ≤ i ≤ 5 we
have that

d
(i)
rn

w
(i)
rn

→ ζ(3).

Sketch. Multiplying both d
(i)
n,l and w

(i)
n,l by the same constant does not change

the convergence of the ratio. Changing (n, k) to (n, n− k) amounts to changing
the direction of the sequence from (an, bn) to (an, (a−b)n). Since cn,k converges
in any direction this operation will not change convergence. The only operation

that we worry about will be taking d
(i)
n,k =

∑k
l=0

(
k
l

)
d
(i−1)
n,l . But if |ζ(3)− d

(i)
n,k

w
(i)
n,k

| ≤
ϵn for some ϵn → 0 then one can show that∣∣∣∣∣∣ζ(3)−

∑k
l=0

(
k
l

)
d
(i)
n,k∑k

l=0

(
k
l

)
w

(i)
n,k

∣∣∣∣∣∣ ≤ ϵ̃n

where ϵ̃n → 0 as n → ∞. Thus
d(i)
rn

w
(i)
rn

→ ζ(3) as n → ∞.

We have thus constructed a pair of multivariate sequences such that their
quotient converges to ζ(3) in any direction. We define

an = d(5)n,n

bn = w(5)
n,n ∈ Z

to be the diagonals of our final sequences. It is clear that we maintain the
property that

2 lcm(1, ..., n)3d
(i)
n,k ∈ Z,
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and thus we have that

2 lcm(1, ..., n)3an ∈ Z. (7)

It is true that an

bn
→ ζ(3). We will show that in fact this rational sequence

satisfies our requirements.

4.1 Recurrence for an and bn

It is miraculously true (and involved to show, consult [PA79] for a full derivation)
that both an and bn satisfy the recurrence given by

n3un − (34n3 − 51n2 + 27n− 5)un−1 + (n− 1)3un−2 = 0 (8)

for different initial values of u0 and u1 (we get an by setting u0 = 0, u1 = 6 and
bn by setting u0 = 1, u1 = 5).

We can immediately see that the dominant asymptotics of the sequence bn
are given by the recurrence

b′n − 34b′n−1 + b′n−2 = 0

by taking the dominant terms of (8). Multiplying by xn and summing over n
gives us the generating function

B′(x) =
1 + 39x

1− 34x+ x2

for the asymptotic behaviour of bn. The exponential nature of the dominant
asymptotics of bn are thus determined by the singularities (1 ±

√
2)4 of the

denominator. Since bn > 0 and (1−
√
2) < 0 we have that the invisible coefficient

in front of the term corresponding to (1 +
√
2)4 cannot be 0. We thus have

that (the asymptotics will also have some sub-exponential terms that will be
unnecessary to note) the dominant exponential growth of bn is given by (1 +√
2)4.

4.2 Approximating ϵn

Our final step is now to use (8) to approximate ϵn asymptotically. Using (8)
one can show that

anbn−1 − an−1bn =
6

n3
,

and so by induction ∣∣∣∣ζ(3)− an
bn

∣∣∣∣ = ∑
k≥n+1

6

k3bkbk−1

(since bn+1 > bn for all n) ≤ 1

b2n

∑
k≥n+1

6

k3

≤ b−2
n .
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Figure 4: Error and denominator for (9)

Note that taking these inequalities (for sufficiently large n) will not affect expo-
nential decay. Now we have almost constructed a sequence that works for us,
since

b−2
n < b−1−δ

n

and so ϵn decays exponentially faster than b−1−δ
n , as desired. However recall

that an is not necessarily an integer, and so an

bn
is not necessarily a valid rational

approximation of ζ(3). To fix this we recall (7) and write∣∣∣∣∣ζ(3)− 2 lcm(1, ..., n)3an
2 lcm(1, ..., n)3bn

∣∣∣∣∣ ≤ b−2
n . (9)

Now the exponential asymptotic growth of the denominator of this rational
approximation is (e3(1 +

√
2)4)n, while the error has exponential asymptotic

decay of ((1+
√
2)4 ·(1+

√
2)4)−n. Since 20 ≈ e3 < (1+

√
2)4 ≈ 33, this sequence

satisfies the requirements of lemma 2.1 (with some explicitly calculable δ > 0),
we can conclude that ζ(3) ∈ R \Q. A visual representation is included in figure
4. Indeed we can see that now (and only now) the inverse error exceeds the
denominator for large n.

4.3 Conclusion

The mysticality of this proof is apparent throughout; there is not much indi-
cation as to the construction of the sequence an/bn would give a valid approx-
imation of ζ(3), or that such a nice recurrence for an and bn could be found.
Perhaps hardest to digest is the fact that the bizarre construction described at
the start of section 4 manages to speed up the convergence of cn,n from about
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decaying at an exponential rate of 4−1 to decaying at an exponential rate of
(1 +

√
2)−8 (a constant about 1/288.5 times the size) while only changing the

growth of the denominator from e34 to e3(1+
√
2)4 (a constant about 8.5 times

the size).
This said, it becomes hard to believe that we can apply proof to anything else.

Indeed it has proven more difficult to extend this proof method to other values of
ζ(2k+ 1) or proving irrationality of other constants, and no noteworthy results
have been produced with the method since, interested readers are encouraged to
consult [Coh] for a view into the search for recurrences similar to (8). A similar
proof can be executed for ζ(2), also presented in Apery’s paper, but both the
proof for ζ(2) and ζ(3) rely on an identity of the form (8); the corresponding
identity for ζ(2) is

ζ(2) = 3
∑
n≥1

1

n2
(
2n
n

) .
Both the ζ(2) and ζ(3) identity provide a rapidly-converging rational se-

quence of partial sums for ζ. If a similar identity was found for ζ(5) the proof
for ζ(3) could likely be adapted, but as such no identity has been found, and
it seems (after computer searching) that it is unlikely that a similar proof tech-
nique will work for ζ(5).
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5 Appendix

Figure 5: Error and denom for (4) in direction (5, 1)

Figure 6: Error and denom for (4) in direction (10, 1)
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