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1 Introduction

Let X be a compact Riemann surface with a Hermitian metric, normalized to unit volume (the Her-
mitian metric gives a Kahler form, then we wedge it together a bunch to get a volume form, then that
gives the volume of X, which we normalize), and let F be the associated curvature tensor (ie we get
a canonical connection, for example Levi-Civita, then take the curvature of that). Let E be a vector
bundle over X. Then define the slope as

µ(E) :=
deg(E)

rank(E)

where

deg(E) = Tr(F ) =

∫
ωn−1 ∧ Tr(F ).

The first Chern class does not depend on the connection picked, and so this is well-defined.

Definition 1.1 We say that a holomoprhic vector bundle E is indecomposable if it cannot be written
as a proper direct sum, ie

E ̸= A ⊕ B.

Definition 1.2 We say that a holomorphic vector bundle E is stable if for all proper holomorphic
sub-bundles F < E we have

µ(F ) < µ(E ).

Remark 1.3 Any stable bundle is indecomposable. To see this let E be stable and assume we can
write E = A ⊕ B. Then

µ(A ) < µ(E ),

µ(B) < µ(E ),

but

µ(E ) =
deg(A ⊕ B)

rank(A ⊕ B)
=

deg(A ) + deg(B)

rank(A ) + rank(B)
< µ(E )

by “mixing”. The fact that deg(A ⊕B) = deg(A )+deg(B) follows from writing out Tr(F ) explicitly,
and applying the additivity of Tr.

We would like to provide a converse statement.

Theorem 1.4 An indecomposable (holomorphic) vector bundle E over X is stable iff there exists a
unitary connection on E with constant central curvature

∗F = −2πiµ(E )I.

Such a connection is unique up to isomorphism.
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Note 1.5 F is a matrix of 2-forms, so the Hodge-star operation turns it into an element of Ω0(EndE )
(a nice matrix of functions) by applying it component-wise.

Remark 1.6 It is ‘easy’ to prove equivalence of this result and the original one due to Narasimhan
and Seshadri. Their proof supposedly relies on intense GIT and deformation theory.

Remark 1.7 If deg(E ) = 0 = µ(E ) these connections are flat, and so given by unitary representations
of the fundamental group. The idea here is that since the connection are flat, it only depends on
the elements of the fundamental group (since parallel transport on a null-homotopic curve doesn’t do
anything).

2.1 Definitions and Notation

If E is a C∞ Hermitian vector bundle over X, a unitary connection A on E gives an operator

dA : Ω0(E) → Ω1(E).

This splits as

dA = ∂A + ∂A

where

∂A : Ω0,0(E) → Ω1,0(E),

∂A : Ω0,0(E) → Ω0,1(E).

Here ∂A is the Dolbeault operator corresponding to A, which defines a holomorphic structure EA on E
(by declaring a section σ to be holomorphic if ∂A(σ) = 0). Conversely if E is a holomorphic structure
there’s a unique (up to isomorphism) way to define a unitary connection A such that

EA = E ,

and so we have a nice relation between holomorphic structures on E and unitary connections on E.
Let A be the space of unitary connections on E and let G (called the gauge group) be the group

of unitary automorphisms of E (ie vector bundle automorphisms u such that h(u(s), u(t)) = h(s, t)).
G acts (as a symmetry group, ie by conjugation) on A by

u(A) = A− (dAu)u
−1 u ∈ G , A ∈ A .

Note that u(A) is still unitary with respect to h. This action extends from G to the complexification
G C – the group of general linear automorphisms of E – by

g(A) = A− (∂Ag)g
−1 + ((∂Ag)g

−1)∗ g ∈ G C, A ∈ A .

Note that g(A) is not necessarily unitary with respect to the original metric h, but will be unitary with
respect to a new metric (as an example, consider C∗ = S1 × R>0; the S1 part is the unitary action
and R>0 just ‘rescales’).

Remark 2.8 Two connections define isomorphic holomorphic structures on E (here E is fixed, we
are instead varying the holomorphic structure on E) precisely when they lie in the same G C orbit (the
idea here is that if two holomorphic structures are isomorphic then there is a change of coordinates
that sends one to the other; this is precisely the group GL(C)). Thus the set of orbits is the set of
holomorphic vector bundles that have the same rank and degree as E (on a Riemann surface then a
vector bundle E is characterized by its degree and rank, and so there are no bundles that sneak in; the
justification is that a bundle can be decomposed into a line bundle and a trivial bundle, where the line
bundle is determined by its Chern class).

For any holomorphic bundle E we write O(E ) to denote the orbit of the associated connection.
Finally we note that if A is a unitary connection then (for a ∈ Ω1(End(E, h)), where End(E, h) has
skew-Hermitian endomorphisms) A+ a is still a unitary connection. We compute

F (A+ a) = F (A) + dA(a) + a ∧ a. (1)
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2.2 Idea of Proof

The proof is by induction and is as follows.

• Assume that the result has been proven for bundles of lower rank. The rank 1 case follows ‘easily’
from Hodge theory.

• Define a functional J that takes in as input a connection A and spits out a positive real number.
We choose a minimizing sequence of J in O(E ) and find a weakly converging subsequence (recall
in a Hilbert space this is H(an, b) → H(a, b) means an weakly converges to a).

• Either the limit is O(E ) or is in another orbit O(F ). In the first case we show the result by
taking small variations of the limit in O(E ). In the second case we apply the inductive hypothesis
to achieve a contradiction.

We importantly use a result due to Uhlenbeck on the weak compactness of connections with L2

bounded curvature.

Remark 2.9 A weakly convergent sequence of C∞ connections does not necessarily need to converge
to a C∞ connection. We will thus need to define connections of class L2

1 (ie connections that differ
from a a fixed C∞ connection by an element of norm ||α||2

L2
1
= ||α||2 + ||∇α||2) with L2 curvature

and gauge transformations in L2
2 (ie functions in L2

2(X,AutE)). The group actions we defined extends
painlessly (also L2

2 ↪→ C0 and so the topology of the bundle is preserved). It is also true that each L2
1

connection defines a holomorphic structure.

2.3 Construction of Functional

Let M be a Hermitian matrix. We define

ν(M) = Tr((M∗M)1/2) = Tr((D∗D)1/2) =

n∑
i=1

|λi|.

Note

• ν defines a norm.

• For M =

(
A B
B∗ D

)
then ν(M) ≥ |Tr(A)|+ |Tr(D)|.

Now let s be a smooth self-adjoint section in Ω0(EndE). Then define

N(s) =

(∫
X

ν(s)2
)1/2

where here ν is being applied to each fibre of Ω0(EndE) (this is functions from X to EndE; this is
the case when the thing inside the brackets is a vector bundle). This norm is in fact equivalent to the
L2 norm. Now finally let A be an L2

1 connection. Then we define

J(A) = N

(
∗F (A)

2πi
+ µ(E )I

)
.

J(A) = 0 iff A has the desired properties! It is thus natural to look for a minimizer of J . We note that
J is not smooth, but it does have the following property: if Ai → A weakly in L2

1, so F (Ai) → F (A)
weakly in L2, then J(A) ≤ lim inf J(Ai).

Remark 2.10 For bundles of rank 2 and degree 0 then J is more or less the Yang-Mills functional
||F ||L2 . For larger ranks the definition of J is chosen to make the inductive step work nicely. The
connections that we find in the end are Yang-Mills connections.
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3 Main Lemma

We take the following result for granted.

Proposition 3.1 Let Ai ∈ A be a sequence of L2
1 connections where ||F (Ai)||L2 is bounded. Then

there is a subsequence {i′} ⊂ {i} and L2
2 gauge transformations ui′ such that ui′(Ai′) converges weakly

in L2
1.

Lemma 3.2 Let E be a holomorphic vector bundle over X. Then either inf J |O(E ) is attained in
O(E ), or there exists a holomorphic bundle F ̸≃ E of the same degree and rank as E and with
inf J |O(F) ≤ inf J |O(E ); Hom(E ,F ) ̸= 0.

Proof. Pick a minimizing sequence Ai for J |O(E ). J(Ai) controls N(F (Ai)). Since N is equivalent to
L2, then ||F (Ai)||L2 is bounded. Applying the above proposition gives WLOG that Ai → B weakly
in L2

1 (this should be up to a gauge transformation ui, but it shouldn’t matter), so F (Ai) → F (B) in
L2 (this is from the note after the definition of J). Then

J(B) ≤ lim inf J(Ai) = inf J |O(E ).

B is an L2
1 connection, and so it defines a holomorphic structure EB on E. There are 2 possible cases.

• EB ∈ O(E ). Then EB ≃ E , and so J(B) = inf J |O(E ) is attained in O(E ).

• E ̸∈ O(E ). Then EB ̸≃ E . EB has the same degree and rank as E ; it remains only to show that
Hom(EB ,E ) ̸= 0.

Remark 3.3 (Call this something maybe) Let A,A′ ∈ A be two connections. Define a connec-
tion dAA′ on the bundle Hom(E,E) = E∗ ⊗ E built from the connection A on the left factor and A′

on the right factor. This defines a Dolbeault operator

∂AA′ : Ω0,0(Hom(E,E)) → Ω0,1(Hom(E,E)).

We can write this as

∂AA′(s) = ∂A(s)− s(∂A′).

∂AA′ vanishes exactly on holomorphic sections of Hom(EA,EA′).

Now suppose that Hom(E ,EB) = 0, and so ∂A0B has trivial kernel. Then ∂A0B is an elliptic operator
of order 1 (a smooth connection is supposedly an elliptic operator of order 1, and the computations to
show that ∂A0B is also one are similar) with trivial kernel, and so

||∂A0Bs||L2 ≥ C||s||L2
1
≥ C||s||L4

(in general if L is an elliptic operator of order k then ||u||Hs+k ≤ C||Lu||Hs or something similar; see
Folland for a proof). The second inequality follows from the Sobolev embedding theorem L2

1 ↪→ L4

compactly.
Note since L2

1 ↪→ L4 compactly, then Ai → B in the L4 norm. We can calculate to find that

(∂A0B − ∂A0Ai
)(s) = (∂B − ∂Ai

)(s).

Then by Holder’s inequality we have that

||(∂B − ∂Ai
)(s)||L2 ≤ ||∂B − ∂Ai

||L4 ||s||L4 ≤ ||B −Ai||L4 ||s||L4

where the last inequality is just because A splits into ∂A and ∂A (note as well that where we apply
Holder’s inequality we actually apply it to the functions |f |2|g|2). Then by the triangle inequality we
have

||∂A0Ai
s||2 ≥ ||∂A0Bs||2 − ||(∂A0B − ∂A0Ai

)s||2
≥ C||s||4 − ||B −Ai||4||s||4
= (C − ||B −Ai||4)||s||4.

Since Ai → B in the L4 norm, and so the right-hand side approaches C||s||4, then we see that the
kernel of ∂A0Ai

is trivial for large enough i. Hence Hom(E ,EAi
) = 0, contradicting EAi

≃ E .
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4 What’s Left?

It remains to show that:

• If the second case happens we achieve a contradiction. The idea for this is as follows:

• If the first case happens, ie that inf J |O(E ) is achieved in O(E ), then this minimum satisfies what
we want.

4.1 Second Case

Assume that the second case of the lemma happens. It turns out that since Hom(E ,F ) ̸= 0 we can
draw

0 P E Q 0

0 N F M 0

α β

rank(Q) = rank(M ) and deg(Q) ≤ deg(M ).
We prove

1. inf J |O(F) ≥ J0 := rank(M ) · [µ(M )− µ(F )] + rank(N ) · [µ(F )− µ(N )]

2. inf J |O(E ) < J1 := rank(P) · [µ(E )− µ(P)] + rank(Q) · [µ(Q)− µ(E )]

We use the inductive hypothesis on rank(E ) to prove the second lemma. We also have rank(Q) =
rank(M ), rank(P) = rank(N ), deg(Q) > deg(M ), deg(P) < deg(N ). Then we can show that

inf J |O(E ) < J1 ≤ J0 ≤ inf J |O(F),

a contradiction to how we found such a F . It follows that this second case can never happen, and so
we always fall into the first case.

4.2 First Case

As part of the lemmas we have that if there is a connection A such that ∗F (A) = −2πiµ(E ) (ie
J(A) = 0) then E is in fact stable. For small t, pick a well-designed gt = 1 + th ∈ G C (where here
d∗AdAh = 2πµ(E )− i ∗ F (A)). Then define

At = gt(A) ∈ O(E ).

as a carefully chosen small variation of A. We can compute

N

(
∗F (At)

2πi
+ µ(E )

)
= N

(
∗F (A)

2πi
+ µ(E )

)
(1− t) +O(t2).

If J(A) ̸= 0 this yields a contradiction, since J(A) ≤ J(At) for all t. Thus we have that

∗F (A) = −2πiµ(E )

as desired.

Remark 4.1 This is actually a very cool proof! A very cool theorem too.
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