
Generating Functions

Alexander Kroitor 1787469

24/05/2019

Probability and Statistics,

Linear Algebra II

Contents

1 Abstract 2

2 Introduction 2

2.1 What is a Sequence and Motivations 2

2.2 Why bother using Generating Functions? 3

2.3 What is a Generating Function? 3

3 Theory 4

3.1 How do we set up a generating function? 4

3.2 The Linear Algebra Approach . 6

3.2.1 How do we use the linear algebra approach? 6

3.2.2 Why linear algebra isn’t so great after all, and how to get

around that . 8

3.2.3 The Jordan Canonical Form 11

3.3 Parameters of Generating Functions 16

3.3.1 Rules of OPSGF’s . 16

3.3.2 Exponential Generating Functions 18

3.3.3 Rule of EGF’s . 18

3.3.4 Moment Generating Functions 20

3.3.5 Dirichlet Generating Functions 21

4 Applications of generating functions 22

4.1 The Fibonacci Sequence . 22

4.2 The Binomial Distribution . 22

4.3 The Poisson Distribution . 23

4.4 The Negative Binomial Distribution 24

5 Conclusion 25

1

1 Abstract

This paper looks at the fundamental ideas behind, and the important rules
for dealing with, generating functions. Four types of generating functions are
looked at: ordinary power, exponential, moment, and Dirichlet. A focus is
placed upon the applications of the moment generating function and its uses
in probability analysis. Linear Algebra is looked at as an alternative to using
generating functions, along with a limited trip into the Jordan Canonical Form
and how to both construct it and use it in the appropriate ways.

2 Introduction

2.1 What is a Sequence and Motivations

We call an ordered collection of objects a sequence. Sequences appear quite
often in mathematics, and have wide-ranging applications. While it is often
simple to talk about a sequence recursively (having a relationship between the
n-th element and previous elements), it is often more useful to figure out how to
define every element of a sequence without referring to previous elements. For
example, the popular Fibonacci Sequence is defined in such a recursive fashion:

fn = fn−1 + fn−2 (n ≥ 2; F0 = 0; F1 = 1)

Calculating the first elements of the set we get:

{fi} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Sequences don’t need to be so simply defined, as the sequence of the maxi-
mum value reached for a given starting value for the Collatz conjecture ’3n+1’
sequence (sequence A025586 in the OEIS):

{ci} = 1, 2, 16, 4, 16, 16, 52, 8, 52, 16, ...

Sequences don’t even have to be explicitly defined at all, as the sequence of
the prime numbers (sequence A000040 in the OEIS):

{pi} = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...

One can imagine fairly easily that sequences pop up all over the place in
mathematics, but we still face a big problem: how do we come up with these
sequences? It was fairly easy to build up the first sequence, but how do we
find other, more complex, sequences? To answer that we turn to generating
functions.

2

2.2 Why bother using Generating Functions?

Consider again the Fibonacci sequence.
Constructing the first few elements of this sequence by directly adding the

previous two terms isn’t hard, but it sure is harder than what we want. What
we want is a way to find a specific element in the sequence without all the long
addition involved. This may seem quite difficult, but becomes very simple once
we start using some generating functions or linear algebra techniques. For now,
let’s introduce the fundamental idea of generating functions.

2.3 What is a Generating Function?

Consider a sequence {an}.
The fundamental idea behind generating functions lies behind the fact that

we can, in a sense, turn this sequence into a function A(x) by attaching each
element of the sequence A to a corresponding infinite degree polynomial (in the
case of ordinary power series generating functions) function A(x). We generally
attach the n-th element in the sequence to the xn term of the polynomial. This
is done by assigning an as the coefficient of the xn in the polynomial.

{an} = a0, a1, a2, a3, ...⇒ A(x) = a0 + a1x+ a2x
2 + a3x

3 + ...

Definition: The ordinary power series generating function of a sequence
{an}∞0 is a function A(x) such that:

A(x) =

∞∑
n=0

anx
n (1)

The idea behind generating functions is NOT to evaluate this function at
any particular x (though we may do so if we wish; if that gives us anything
useful is another issue). The fundamental idea is to artificially take a sequence
and turn it into a function in a specific way, specifically so that we can spot
some pattern in the coefficients of the power series representation of the function
(which we declared equal to the sequence in the first place). This specific type
of generating functions is called an ordinary power series generating function,
or an OPSGF, and it is both the most common and the first type of generating
function that we will look at.

This rendition of the sequence is certainly useful; if we assume that we have
a different way of describing the function A(x), something that we will spend
quite a bit of time on, we can do exciting things like:

A(x) = a0 + a1x+ a2x
2 + a3x

3 + ...

A(0) = a0

3

or even

A(1) = a0 + a1 + a2 + a3 + ...

=

∞∑
n=0

an.

One can imagine that this would be quite useful for identifying certain el-
ements; if we can somehow find a way to express the coefficient of xn in the
expansion of a generating function F we can identify it as the n-th element in
whatever sequence that F is generating.

3 Theory

3.1 How do we set up a generating function?

The process of constructing an ordinary power series generating function is as
follows [taken from Wil94]:

Given: a recurrence formula that is to be solved by the method of generating
functions.

1. Give a name to the generating function that you will look for, and write
out that function in terms of the unknown sequence (e.g., call it A(x), and
define it to be

∑
n≥0 anx

n).

2. Multiply both sides of the recurrence by xn, and sum over all values of n
for which the recurrence holds.

3. Express both sides of the resulting equation explicitly in terms of your
generating function A(x).

4. Solve the resulting equation for the unknown generating function A(x).

5. If you want an exact formula for the sequence that is defined by the given
recurrence relation, then attempt to get such a formula by expanding
A(x) into a power series by any method you can think of. In particular,
if A(x) is a rational function (quotient of two polynomials), then success
will result from expanding in partial fractions and then handling each of
the resulting terms separately.

With this process in mind, let’s try applying it to a very simple recurrence
relationship:

an+1 = 2an + 1 (n ≥ 0, a0 = 0)

Applying step 1 we declare that we want our generating function A(x) to be
equal to

∑
n≥0 anx

n.

4

Applying step 2 we multiply both sides of the relationship by xn and then
hit both sides with a

∑
n≥0 from the left:

∑
n≥0

an+1x
n = 2

∑
n≥0

anx
n +

∑
n≥0

xn

∑
n≥0

an+1x
n = 2A(x) +

1

1− x

Applying step 3 is more complicated, but with by expanding and fiddling with

the left term we can change it into something similar to A(x):∑
n≥0

an+1x
n = a1 + a2x+ a3x

2 + ...

= a1 + a2x+ a3x
2 + ... ∗ x

x

=
a1x+ a2x

2 + a3x
3 + ...

x
+
a0 − a0
x

=
a0 + a1x+ a2x

2 + a3x
3 + ...

x
− a0

x

=
A(x)

x
− a0

x

=
A(x)

x

Leaving us with:

A(x)

x
= 2A(x) +

1

1− x

Applying step 4 here is simple algebraic manipulation:

A(x) =
x

(1− x)(1− 2x)

At this point we have our generating function A(x), but it doesn’t really tell
us much; by expanding the generating function using partial fractions we can
reveal something about our sequence, which fulfills step 5:

5

A(x) =
x

(1− x)(1− 2x)
=

N

1− 2x
+

M

1− x

=
1

1− 2x
− 1

1− x
=
∑
n≥0

(2x)n −
∑
n≥0

xn

= (20 + 21x+ 22x2 + ...)− (1 + x+ x2 + ...)

= (20 − 1) + (21 − 1)x+ (22 − 1)x2 + ...

At this point something not-so-obvious is clear; the coefficient of the n-th ele-
ment in our function A(x) is 2n−1, which of course means that the n-th element
of our original sequence is 2n− 1! By using generating functions we have found
a hidden way of finding each element in our sequence. Now that we have dis-
cussed the basics of generating functions, let us digress and talk about the same
way we can approach this sort of problem with linear algebra.

3.2 The Linear Algebra Approach

3.2.1 How do we use the linear algebra approach?

If you have read this paper up until this point, you have likely already taken
a linear algebra class, and are thus familiar with the process of multiplying
matrices and vectors together. This is worth mentioning, as many people may
prefer to use the linear algebra approach merely because they are used to the
concepts involved.

The linear algebra approach to this sort of recurrence problem relies mostly
on the diagonalization of a suitable matrix; how we will find this matrix will be
discussed shortly.

Looking at an recurrence relationship, say an+2 = Can+1 +Dn with n ≥ 0,
we can in a sense store the current elements of the recurrence relationship that
we are looking at in a vector and write:

~vn =

 an
an−1
an−2

 *A−−→

an+1

an
an−1

 = ~vn+1

where the vector elements are being mapped to one higher value of n. We can
express each term as a linear combination of the previous terms:

an+1 = Can +Dan−1

an = an

an−1 = an−1

6

which is clearly just the same as multiplying the original vector
(an
an−1
an−2

)
by a

matrix A with

A =

C D 0
1 0 0
0 1 0

such that

A~vn =

C D 0
1 0 0
0 1 0

 an
an−1
an−2

 =

Can +Dan−1
an
an−1

 =

an+1

an
an−1

 = ~vn+1

This matrix multiplication form of sequences can be extended:

~vn+2 = A~vn+1 = A(A~vn) = A2~vn

~vn+i = Ai~vn

~vn = An−i~vi

This can once again be extended using the process of diagonalization. Each
matrix P cancels with its inverse matrix P−1 when Ai is expanded.

Ai = (PD���P−1)(�PD�
��P−1)(�PD�

��P−1)...(�PDP
−1) = (PDiP−1)

In the end this sequence problem boils down to a diagonalization problem.
Doing the same recurrence an+1 = 2an + 1(n ≥ 0, a0 = 0) this way is as follows,
sticking a 1 in the bottom of ~vi in order to ’store’ it:

~v0 =

(
a0
1

)
=

(
0
1

)
A =

[
2 1
0 1

]
= PDP−1 =

[
−1 1
1 0

] [
1 0
0 2

] [
0 1
1 1

]
Ai = PDiP−1 =

[
−1 1
1 0

] [
1 0
0 2

]i [
0 1
1 1

]

thus

7

~vn = An~v0 = PDnP−1~v0 = P

[
1 0
0 2

]n
P−1

(
0
1

)
= P

[
1 0
0 2n

]
P−1

(
0
1

)
=

(
2n − 1

1

)
=

(
an
1

)
so, exactly as we found before using generating functions:

an = 2n − 1

Clearly this method works just as well for this sequence, although the messy
process of diagonalization makes it a little nastier to do by hand, though with
a good computer program this becomes less of a hindrance.

3.2.2 Why linear algebra isn’t so great after all, and how to get
around that

To motivate this section we will start by doing two sample problems using both
linear algebra and generating functions to show the shortcomings of each. First
we’ll do the recurrence relation an+2 = 3an+1 − 2an (a0 = 3, a1 = 4) and next
we’ll do the recurrence relation an+2 = 6an+1 − 9an (a0 = b, a1 = c).

Starting off as we usually do, we take our recurrence relation and apply our
procedure to it:

an+2 = 3an+1 − 2an (a0 = 3, a1 = 4)∑
an+2x

n =
∑

3an+1x
n −

∑
2anx

n∑
anx

n − a0 − a1x
x2

= 3

∑
anx

n − a0
x

− 2
∑

anx
n

A(x)− 3− 4x

x2
=

3A(x)− 9

x
− 2A(x)

A(x) =
3− 5x

1− 3x+ 2x2

=
1

1− 2x
+

2

1− x
=
∑

(2x)n + 2
∑

(x)n

[xn]A(x) = 2n + 2

Where [xn]A(x) indicates the coefficient of xn in the function A(x). The
linear algebra method goes similarly smoothly:

8

~v1 =

(
a1
a0

)
=

(
4
3

)
An =

[
3 −2
1 0

]n
=

[
1 2
1 1

] [
1 0
0 2

]n [−1 2
1 −1

]
=

[
2 ∗ 2n − 1 −2 ∗ 2n + 2

2n − 1 −2n + 2

]
~vn = An−1~v1

=

[
2 ∗ 2(n−1) − 1 −2 ∗ 2(n−1) + 2

2(n−1) − 1 −2(n−1) + 2

](
4
3

)
=

(
2n + 2
2n+4

2

)
an = 2n + 2

The previous problem is an example of the sort of problem where both
methods work without any hitches, but the following one will demand a little
more attention for both methods:

an+2 = 6an+1 − 9an (a0 = b, a1 = c)

A(x) =
b+ cx− 6bx

1− 6x+ 9x2
=
b+ cx− 6bx

(1− 3x)2

= b
1

(1− 3x)2
+ c

x

(1− 3x)2
− 6b

x

(1− 3x)2

Here we find ourselves in a small pickle! We know how to turn 1
1−x into a

power series, but how do we turn 1
(1−x)2 into one? In fact it turns out that

∑
n

nixn =
∑(

x
d

dx

)i
xn =

(
x
d

dx

)i∑
xn =

(
x
d

dx

)i
1

1− x(
x
d

dx

)
1

1− x
=

x

(1− x)2
=
∑

nxn

Applying this gets us somewhere:

9

A(x) = b ∗ 3x

3x

1

(1− 3x)2
+ c ∗ 3

3

x

(1− 3x)2
− 6b ∗ 3

3

x

(1− 3x)2

=
b

3x

3x

(1− 3x)2
+
c

3

3x

(1− 3x)2
− 2b

3x

(1− 3x)2

=
b

3x

∑
n(3)n(x)n +

c

3

∑
n(3)n(x)n − 2b

∑
n(3)n(x)n

=
b

3

∑
n(3)n(x)n−1 +

c

3

∑
n(3)n(x)n − 2b

∑
n(3)n(x)n

[xn]A(x) =
b

3
(n+ 1)3n+1 +

c

3
(n)3n − 2b(n)3n

= (3b(1− n) + cn)3n−1

Which is about it for the generating functions method of solving this prob-
lem. The linear algebra approach is a little more upsetting:

~v1 =

(
a1
a0

)
=

(
c
b

)
An =

[
6 −9
1 0

]n
If we want to apply the typical process of diagonalization to this matrix we
calculate the following to solve for the matrices eigenvalues:

0 = |λI −A|

=

∣∣∣∣λ− 6 9
−1 λ

∣∣∣∣
= λ2 − 6λ+ 9

λ1 = 3

λ2 = 3

[
−3 9 0
−1 3 0

]
∼
[
1 −3 0
0 0 0

]

~ε1 = ~ε2 =

(
3
1

)
⇒ P =

(
3 3
1 1

)
This is a big problem! The entirety of diagonalization depends on being able

to find an invertible matrix P composed of the eigenvectors of A; by the invertible
matrix theorem if the eigenvectors of A are colinear we cannot invert our matrix
P to diagonalize A, and thus cannot solve our problem using our current linear

10

algebra technique. This roadblock provides our motivation for the covering of
the Jordan Canonical Form (or the Jordan Normal Form), which will help us
”diagonalize” even if our P matrices are not invertible.

3.2.3 The Jordan Canonical Form

The Jordan Canonical Form involves taking a matrix A and constructing a
similar matrix J (such that A = PJP−1) with it. In this case, however, J is not
a diagonal matrix holding the eigenvalues of A along its diagonal. Instead, J is
of the following form, with λn as the n-th eigenvalue of A (and λj possibly equal
to λk, meaning that we can have multiple blocks with the same eigenvalues:

J =

J1 0 . . . 0 0
0 J2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ji−1 0
0 0 . . . 0 Ji

Jn =

λn 1 . . . 0 0
0 λn . . . 0 0
...

...
. . .

...
...

0 0 . . . λn 1
0 0 . . . 0 λn

That is to say that that the matrix J is composed of many blocks, each
consisting of a diagonal of the repeating corresponding eigenvalue and 1s all
above the diagonal.

We call these Jns Jordan blocks, and say that our matrix J is composed of
many Jordan blocks. We call an n by n Jordan block a block of size n.

Putting a matrix into JCF has two roadblocks that we will have to discuss:
how to find the size of the Jordan blocks for corresponding eigenvalues, and how
to construct the P matrix.

The method [Linb] for figuring out how to construct our J blocks is as follows:

1. Find the characteristic polynomial for the matrix and express it as pA(x) =∏
i(x− λi)ai , where ai is the algebraic multiplicity of the eigenvalue λi.

2. Calculate the nullity of (A−λi)r for r = 1. Repeat this process, increasing
r by 1 each time, until N [(A− λi)r] is equal to ai (until it is equal to the
exponent of the eigenvalue we’re talking about in the first place). If we
write these nullities in a sequence we get 0 = N0 < N1 < ... < Nlk = ai.

3. This sequence gives us information about the sizes of our Jordan blocks:
Ni −Ni−1 gives us the number of Jordan blocks with at least size i with
our eigenvalue. This knowledge can be used to construct the J matrix.

11

Of course an example:

A =

1 0 0 0 0 0
0 0 0 0 −1 1
−1 −1 1 1 −1 1
0 0 0 1 0 0
0 1 0 0 2 0
0 0 0 0 0 1

pA(x) = (x− 1)6

(A− I)1 =

0 0 0 0 0 0
0 −1 0 0 −1 1
−1 −1 0 1 −1 1
0 0 0 0 0 0
0 1 0 0 1 0
0 0 0 0 0 0

⇒ N1 = 3

(A− I)2 =

0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⇒ N2 = 5

(A− I)3 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⇒ N3 = 6

N3 −N2 = 1

N2 −N1 = 2

N1 −N0 = 3

Based on this, there is one block with at least size 3, 2 blocks with at least size
2, and 3 blocks with at least size 1. It follows that there is 1 size 3 block, 1 size
2 block, and 1 size 1 block. From this we can construct our matrix J (with the
blocks positioned wherever we want them):

Now that we have discussed the basic idea behind finding the J matrix in the
JCF decomposition, let’s talk about how to find the P matrix (the weak-point
that got us before).

Instead of simply finding the eigenvectors of our matrix, which was precisely
what got us before (we only had 1 eigenvector but we needed 2), we find the
generalized eigenevectors of our matrix [Lina]. While a normal eigenvector is

12

defined as ~x such that (A − λI)~x = ~0, a generalized eigenvector is defined as
being a vector ~x such that (A − λI)k~x = ~0 for some integer k [OS06]. We can
think of these eigenvectors as a chain; the first ’real’ eigenevector v1 gets mapped
to ~0 by multiplication by (A−λI). The second generalized eigenevector v2 gets
mapped to v1 by multiplication by (A − λI) (and since ~v1 gets mapped to ~0
by (A− λI) then v2 gets mapped to ~0 by (A− λI)2. We continue this process
of solving (A − λI)~vi = ~vi−1 until we find enough generalized eigenvectors to
fill up the corresponding spots in our P matrix. For a new A (one that isn’t a
humongous 6 by 6 matrix) we have:

A =

4 1 0
1 4 1
4 −4 7

⇒ ~v1 =

1
1
0

This matrix has only one eigenvector for its single eigenvalue of 5. We now

solve for the next element in the chain, finding ~v2 such that (A − 5I)~v2 = ~v1.
This gives us the vector:

~v2 =

0
1
2

Repeating this procedure gives us our ~v3:

~v3 =

0
0
1

We can now see where the whole idea of a chain comes in:

~v3
*(A-5I)−−−−→ ~v2

*(A-5I)−−−−→ ~v1
*(A-5I)−−−−→ ~0

We then use these three vectors to form our P matrix:

13

P =

 | | |
~v1 ~v2 ~v3
| | |

 =

1 0 0
1 1 0
0 2 1

In general, if we have a J matrix consisting of i Jordan Blocks with size ai

and eigenvalues λi, our P matrix is the following:

P =

 | | | |
~vλ1,1 . . . ~vλ1,a1 ~vλ2,1 . . . ~vλi,ai
| | | |

If there are repeats in the eigenvalues for different Jordan Blocks, the appro-

priate eigenvector is chosen to start off the chain for that Jordan Block (read:
the eigenvector that creates a chain of length ai).

After finishing our P matrix we compose our P , J , and P−1 to get the
following JCF decomposition:

A =

4 1 0
1 4 1
4 −4 7

=

1 0 0
1 1 0
0 2 1

5 1 0
0 5 1
0 0 5

 1 0 0
−1 1 0
2 −2 1

Which gives us our answer. Finishing the motivating problem, and noting

that An = PJnP−1, we apply JCF decomposition to our matrix instead of just
normally diagonalizing:

~v1 =

(
a1
a0

)
=

(
c
b

)
An =

[
6 −9
1 0

]n

pA(x) = (x− 3)2

N1 = 1

N2 = 2

N2 −N1 = 1

N1 −N0 = 1

14

As such there is only one block of size 2. Our first (and only true) eigenvector
~v1 is

(
3
1

)
, and the following generalized eigenvector we get from that is

(
1
0

)
.

From these we get our Jordan Normal form of A, which can then be turned into
An.

An =

[
3 1
1 0

] [
3 1
0 3

]n [
0 1
1 −3

]
=

[
3n + 3n ∗ n −3 ∗ 3n ∗ n

3n∗n
3 3n − 3n ∗ n

]

~vn = An−1~v1

=

[
3n−1 + 3n−1 ∗ (n− 1) −3 ∗ 3n−1 ∗ (n− 1)

3n−1∗(n−1)
3 3n−1 − 3n−1 ∗ (n− 1)

](
c
b

)
=

(
3∗3n∗b−3∗3n∗b∗n+3n∗c∗n

3
6∗3n∗b−3n∗c−3∗3n∗b∗n+3n∗c∗n

9

)
Which, not so coincidentally, corresponds to an = (3b(1 − n) + cn)3n−1.

Clearly the linear algebra way works just as well in the sense that it gives us
the same answer as the generating function approach, but for long recurrences
it requires large matrices, and the cumbersome nullity/block size finding that
come with it. In these situations generating functions are cleaner and nicer to
use.

A parallel between the two different ways the methods go off course can be
seen in the linear algebra approach. When we calculate the eigenvectors for our
matrix A, what we are actually doing is finding some ”eigenconditions”, initial
conditions that (if used) will result in an eigensequence (or one that increases
by a fixed factor with each iteration). How these eigensequences manifest in
the linear algebra approach is quite clear; they go through the P−1 matrix
and get turned into something in the eigenbasis, then getting multiplied by
the interior D matrix (which contains all the eigenvalues of this sequence),
and then goes along its merry way having been multiplied by some constant.
What happens in the generating function approach is more subtle; when the
eigenconditions are initially put in, all but one of the bottom factors (such
as (1 − ax)) vanish, cancelling with the top part of the fraction provided by
the eigenconditions. This leaves us with a single term (say an) which ends up
constructing the rest of the sequence and multiplying each term by a. Obviously
the various terms in the denominator of our generating function are related to
the eigenvalues of the linear algebra approach; they’re the same! The bi’s in

c0+c1x+c2x
2+...

(1−b0x)(1−b1x)(1−b2x)... are in fact the same thing as the eigenvalues, and as such,

finding the eigenvalues for our linear algebra method consists of factoring a big
polynomial. Finding the corresponding eigenvectors (or starting conditions) for
bi (also called λi) merely consists of solving for the c’s in c0 + c1x+ c2x

2 + ... =

15

(1−b0x)(1−b1x)(1−b2x)...
(1−bix) . The reason the linear algebra method broke down was

due to the repeated eigenvalue, which also appeared in the generating functions
version as the repeated polynomial (1− 3x)2.

It is clear that the generating functions method works infinitely better, as
taking a couple of derivatives is easy as crackers compared to finding eigenvalues,
finding nullities after putting a matrix to the k-th power, and then finding
generalized eigenvectors. As such, we will stop using the linear algebra method
and focus more on the generating function approach, as well as its uses and
parameters.

3.3 Parameters of Generating Functions

We will now discuss the various rules that can be used to shortcut generating
functions, as well as a discussion on a new type of generating function called
exponential generating functions (as opposed to ordinary power series generating
functions) and their corresponding rules.

3.3.1 Rules of OPSGF’s

Some of these rules are included for helpfulness during this brief review of the
topic, while some are included for personal interest and consistency [mostly in-
spired by Wil94].

Rule 1

{an+h}∞0 ⇒
A(x)− a0 − a1x− a2x2 − ...− ah−1xh−1

xh

We already saw an example of this sort of manipulation before, but now we
generalize it:∑

an+hx
n = ah + ah+1x+ ...

= (ah + ah+1x+ ...) ∗ x
h

xh

=
(ahx

h + ah+1x
h+1 + ...)

xh
± a0
xh
± a1x

xh
± ...± ah−1x

h−1

xh

=
(a0 + a1x+ ...)− a0 − a1x− ...− ah−1xh−1

xh

=
A(x)− a0 − a1x− ...− ah−1xh−1

xh

Which shows how shifts affect an OPS generating function in general.

16

Rule 2
With P (n) as a polynomial:

{P (n)an}∞0 ⇒ P

(
x

(
d

dx

))
A(x)

Earlier on this was demonstrated for P (n) = ni and an = 1. Extending this
doesn’t require much else:

∑
n

P (n)anx
n =

∑
n

(∑
i

bin
i

)
anx

n

=
∑
i

bi
∑
n

nianx
n

=
∑
i

bi
∑
n

(
x
d

dx

)i
anx

n

=
∑
i

bi

(
x
d

dx

)i∑
n

anx
n

= P

(
x

(
d

dx

))
A(x)

This rule can be applied easily to say, find the generating function of an = n3

as just
(
x
(
d
dx

))3 1
1−x = x2+4x+1

(1−x)4 .

Rule 3

{ ∑
n1+n2+n3...=n

an1
bn2

cn3
...

}∞
0

⇒ A(x)B(x)C(x)...

This one makes sense after looking at what the coefficient of xn in the function
A(x)B(x)C(x)... is. When we multiply these many polynomials together, we
get an xn term whenever the sum of the powers of some given x’s is equal to n.
As such we can see that the coefficient of one xn coefficient in the multiplication
of A(x)B(x)C(x) may be something like a1b3cn−4, but to find our new function
we want to find the coefficients of all the xn’s. As such we can see the the
coefficient of xn is actually

∑
i+j+k=n aibjck. Extending this logic, we see that

the coefficient of A(x)B(x)C(x)... is indeed
∑
i+j+k+...=n aibjck..., and thus the

former is the generating function for the latter.

17

It follows from this that

{
∑

n1+n2+..nk=n

an1an2 ...ank}∞0 ⇒ Ak(x)

3.3.2 Exponential Generating Functions

Until now we have talked exclusively about ordinary power series generating
functions of the form A(x) =

∑
anx

n. We now turn our attention to the family
of similar, but different, exponential generating functions.

Definition: The exponential generating function of a sequence {an}∞0 is a
function A(x) such that:

A(x) =

∞∑
n=0

an
n!
xn

Of course we immediately see an analogue to ex; by setting {an} to 1, we
get that

{1} ⇒
∑ 1

n!
xn = ex

Or in other words, ex is the exponential generating function for {1}, the same
way 1

1−x is the OPSGF for {1}. The structure behind EGF’s make the rules
that apply to them occasionally more complex, and occasionally less complex
(and thus preferable) to work with. Let’s go over them and their justifications.

3.3.3 Rule of EGF’s

Rule 1

{an+h}∞0 ⇒
(
d

dx

)h
A(x)

We look at A(x) =
∑ an

n! x
n, our EGF for {an}, and take a single derivative,

seeing the following:

18

(
d

dx

) ∞∑
n=0

an
n!
xn =

∞∑
n=1

nan
n!

xn−1

=

∞∑
n=1

an
(n− 1)!

xn−1

=

∞∑
n=0

an+1

(n)!
xn

Which is the EGF for {an+1}. If we continue this derivative-taking process h
times we get our EGF for {an+h} as A(h)(x).

Rule 2

{P (n)an}∞0 ⇒ P

(
x

(
d

dx

))
A(x)

Just the same as the OPSGF vesion, taking the derivative then multiplying
by x has the same effect of sticking an n out in front:

∑
n

P (n)
an
n!
xn =

∑
n

(∑
i

bin
i

)
an
n!
xn

=
∑
i

bi
∑
n

ni
an
n!
xn

=
∑
i

bi
∑
n

(
x
d

dx

)i
an
n!
xn

=
∑
i

bi

(
x
d

dx

)i∑
n

an
n!
xn

= P

(
x

(
d

dx

))
A(x)

This is the same as the result of the OPSGF version, which makes this rule
particularly unexciting.

19

Rule 3

{ ∑
n1+n2+n3...=n

an1
bn2

cn3
...

n1!n2!n3!...

}∞
0

⇒ A(x)B(x)C(x)...

with

[
xn

n!

]
A(x)B(x)C(x)... =

∑
n1+n2+n3...=n

n!an1
bn2

cn3
...

n1!n2!n3!...

Or, in the case of only two functions A(x) and B(x):[
xn

n!

]
A(x)B(x) =

∑
n1+n2=n

n!an1
bn2

n1!n2!
=
∑
n1

(
n

n1

)
an1

bn−n1

This comes about from multiplying the EGF’s together:

A(x)B(x)C(x)... =

{∑
n1

an1
xn1

n1!

}{∑
n2

an2
xn2

n2!

}{∑
n3

an3
xn3

n3!

}
...

=
∑

n1+n2+n3+...=n

an1
bn2

cn3
...

n1!n1!n1!...
xn

3.3.4 Moment Generating Functions

We will now cover a section that is important for probability calculations (and
will be important later in a few sections), though we will only discuss the discrete
version.

A moment µk of a probability distribution is defined as follows[GS97]:

µk = E(Xk) =
∑

xkP (X = x)

You may notice that µ1 is the mean of the probability distribution and
µ2 − µ2

1 is the variance of the probability distribution. This fact will be used
later on.

A moment generating function is so named because, just like our other gen-
erating functions, it an interesting sequence tacked along it. Unsurprisingly
this sequence is the sequence µk of the various moments of the function. We
define our moment generating function for an arbitrary probability distribution
as follows:

20

Definition: The moment generating function of a random variable X is a
function g(t) such that:

g(t) = E(etx) =
∑
j

etxjP (X = xj)

But it is also equal to:

g(t) = E

(∑ tnxn

n!

)
=
∑ tnE(xn)

n!
=
∑ µnt

n

n!

= 1 + µ1t+
µ2t

2

2!
+
µ3t

3

3!
+ . . .

showing how moments appear in this generating function. How to extract a
certain moment is simple[Gri]:

dr

dtr
(g(t))

∣∣∣∣
t=0

=
dr

dtr
(
E(etx)

)∣∣∣∣
t=0

= E

(
dr

dtr
(etx)

)∣∣∣∣
t=0

= E
(
xr(etx)

)∣∣
t=0

= E (xr)

= µr

Thus we have a method to find the various moments of a probability dis-
tribution; first we construct our g(t) by multiplying our P (X = x) by etx and
summing. We then take the g(t), differentiate it k times. Finally we set t = 0
and go from there to find our µk.

3.3.5 Dirichlet Generating Functions

As an aside, there is another family of generating functions called the Dirichlet
generating functions.

Definition: The Dirichlet generating function of a sequence {an}∞1 is a
function A(x) such that:

A(x) =

∞∑
n=1

an
nx

The most famous example of a DGF is the Riemann Zeta function:

ζ(x) =
∑
n

1

nx

Which also happens to be the DGF for the sequence {1}.

21

This ends the section dedicated to the various rules of both OPSGF’s and EGF’s.
The following sections will contain examples of the applications of generating
functions, both OPS and E.

4 Applications of generating functions

This section will be dedicated to various examples that employ generating func-
tions to solve.

4.1 The Fibonacci Sequence

an+2 = an+1 + an (n ≥ 0; a0 = 0; a1 = 1)

Presented at the beginning of this paper, we will now deal with the question
”what is the nth term in the Fibonacci Sequence?”

Going around in our usual way, we get this:

A(x)− a0 − a1x
x2

=
A(x)− a0

x
+A(x)

A(x)− x
x2

=
A(x)

x
+A(x)

A(x) =
x

1− x− x2

Solving with partial fractions the usual way, we get a closed form representation
of an:

an = [xn]A(x) =
1√
5

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)

Equivalently we could have approached this with an EGF perspective and
solved for [x

n

n!]A(x) where:

A′′(x) = A′(x) +A(x) (A(0) = 0, A′(0) = 1)

and we would have gotten the same thing.

4.2 The Binomial Distribution

The binomial distribution describes an experiment with n identical and inde-
pendent trials, each with a chance p of success. The experiment describes the
probability P (X = x) that the number of successful trials of those n indepen-
dent will be x. The probability of the sum being x is P (X = x) =

(
n
x

)
pxqn−x,

and the possible values for x range from 0 all the way up to n (so we sum from

22

0 to n). To start we take our P (X = x) =
(
n
x

)
pxqn−x and multiply it by it by

etx, remembering that p+ q = 1:

g(t) =

n∑
x=0

etx
(
n

x

)
pxqn−x

=

n∑
x=0

(
n

x

)
(pet)xqn−x

= (pet + q)n

g′(0) = npet(pet + q)n−1
∣∣
t=0

= np(p+ q)n−1 = np = µ1

g′′(0) = npet(pet + q)n−2(npet + q)
∣∣
t=0

= (np)2 + npq = µ2

E(X) = µ1 = np

V (X) = µ2 − (µ1)2 = (np)2 + npq − (np)2 = npq

Exactly as expected, but with much less work (forgoing the otherwise required
discussion of considering each trial separately.

4.3 The Poisson Distribution

The Poisson distribution is another example of a discrete probability distribu-
tion. The only parameter of the Poisson distribution is λ, which is the expected
number of events given that you wait a certain amount of time. The probability

of x events happening in a given time is P (X = x) = λxe−λ

x! . The possible range
of values for X range from 0 to ∞, so we sum appropriately.

g(t) =

∞∑
x=0

etx
λxe−λ

x!

= e−λ
∞∑
x=0

(etλ)x

x!

= e−λeλe
t

g′(0) = λ

g′′(0) = λ2 + λ

E(X) = λ

V (X) = λ2 + λ− λ2 = λ

23

Which covers the Poisson Distribution, with the absolutely expected mean and
variance (given that the Poisson is set up by calling the mean and variance λ).

4.4 The Negative Binomial Distribution

The negative binomial distribution measures the probability that you will wait
a certain number of trials (each with success probability p) before getting r
successes. This distribution is closely related to the binomial distribution in that
while the binomial distribution counts probabilities of getting certain numbers
of successes given a fixed number of trials, the negative binomial does the inverse
(or maybe the ’negative’) and instead counts the probabilities of getting certain
numbers of trials given a fixed number of successes. In this situation the possible
values of X range from r to ∞.

g(t) =

∞∑
x=r

etx
(
x− 1

r − 1

)
pr(1− p)x−r

= pr
∞∑
x=r

(et)x−r+r
(
x− 1

r − 1

)
(1− p)x−r

= (pet)r
∞∑
x=r

(
x− 1

r − 1

)
((1− p)et)x−r

= (pet)r
∞∑
x=r

(
x− 1

r − 1

)
((1− p)et)x−r ∗ (1− (1− p)et)r

(1− (1− p)et)r

=
(pet)r

(1− (1− p)et)r
∗
∞∑
x=r

(
x− 1

r − 1

)
((1− p)et)x−r(1− (1− p)et)r︸ ︷︷ ︸

A neg. bin. summed from r to ∞; equals one.

=
(pet)r

(1− (1− p)et)r
∗ 1

=

(
pet

1− (1− p)et

)r

g′(0) =
r

p

g′′(0) =
r2 + r(1− p)

p2

E(X) =
r

p

V (X) =
r2 + r(1− p)

p2
− r

p

2
=
r(1− p)
p2

24

Which once again lines up with what we expect. The geometric distribution
is a special case of the negative binomial distribution with r=1. Accordingly,

the geometric distribution has E(X) = 1
p and V (X) = (1−p)

p2 , catching two
distributions with one MGF.

This marks the end of the probability distributions we will look at using
MGFs, and the end of the content in this paper.

5 Conclusion

Though generating functions are not omnipotent, they come pretty darn close.
They can be used to tackle (and quite handily) any simple linear recurrence
relationships, and can be used to derive some neat sequences without much
effort. They trump the classic linear algebra by quite a bit, as they need none
of the complicated JCF shown in this paper. Overall the generating function
technique is a powerful one that every aspiring sequentialist should have under
their belt. Ideally anyone who has fully read and understood this paper will
have all the tools they need to tackle generating functions in the future, and
will be able to approach them with some amount of familiarity.

25

References

[Wil94] Herbert S. Wilf. Generatingfunctionology. 2nd ed. Boston: Academic
Press, 1994. isbn: 0127519564.

[GS97] Charles M. Grinstead and J. Laurie Snell. Introduction to probability.
2nd rev. ed. Providence RI: American Mathematical Society, 1997.
isbn: 0821807498.

[OS06] Peter J. Olver and Chehrzad Shakiban. Applied linear algebra. Upper
Saddle River NJ: Prentice Hall, 2006. isbn: 0131473824.

[Gri] Gleb Gribakin. Chapter 6: Moment Generating Functions.

[Lina] Jeff Lindquist. How to Find Bases for Jordan Canonical Forms Ver-
sion 2.0.

[Linb] Jeff Lindquist. How to Find Jordan Canonical Forms.

26

