
Preseminar Notes

You

December 14, 2024

1 Introduction

These are notes for the pre-seminar. Thanks for coming!

1.1 Notation

We adopt the notation

• (z) = (z1, · · · , zd)

• zk = zk1
1 · · · z

kd

d

• z = 1/z

• If A(z) =
∑

i∈Zd fiz
i then [zn≥0]A(z) =

∑
i∈Nd fiz

i

• If A(z) =
∑

i∈Zd fiz
i then ∆A(z) =

∑
n≥0 fn1t

n

2 ACSV

2.1 Analytic Combinatorics

Enumerative combinatorics is the math of counting things. Often this is done by looking at a generating
function. Let an be some sequence we care about.

{an}n≥0 ←→ A(z) =
∑
n≥0

anz
n.

This is traditionally formal (no evaluation of
∑
anz

n allowed!) Analytic combinatorics says to heck
with that and treats the RHS as a normal sum (note this requires almost always that

∑
anz

n is
convergent around 0). The natural setting for this is C.

Example 2.1 Consider A(z) = 1
1+z2 . The radius of convergence is 1, but only problems are at ±i.

Enumerative combinatorics is often concerned with

sequence −→ GF.

Analytic combinatorics is more often concerned with

GF −→ smtn about an.

Typically the “something” is asymptotics of an.

1



3 Lattice Walks

The focus of this talk will be lattice walks.

Definition 3.1 (Lattice Walk Model) A d-dimensional lattice walk model consists of:

- a (finite) step set S ⊆ Zd \ 0,

- a restricting region R ⊆ Zd,

- a starting point p ∈ R,

- a terminal set T ⊆ R.

A walk of length n in this lattice walk model consists of a tuple (s1, · · · , sn) ∈ Sn such that p + s1 +
· · ·+ sj ∈ R for all 0 ≤ j ≤ n and p+ s1 + · · ·+ sn ∈ T . The characteristic polynomial of a lattice
walk model is

S(z) =
∑
s∈S

zs.

Example 3.2 EXAMPLE

Note 3.3 We will always let p = 0 and T = R. For mysterious technical reasons we restrict ourselves
to short-step models, where S ⊆ {−1, 0, 1}d \ 0.

3.1 Dyck Paths

We will, as an example, find the generating function for Dyck prefixes.

Definition 3.4 A Dyck prefix is a walk in the 1d-lattice walk model S = {−1, 1}, R = N, p = 0, T =
N.

How do we find the GF for these? We can find a bijection from these to paths returning to the origin,
but maybe we’re lazy. Instead we proceed like a calculus student who’s wandered into a combinatorics
lecture.

Example 3.5 Define

F (x, t) =
∑
n≥0

∑
i≥0

fi,nx
i

 tn

where fi,n is the number of Dyck prefixes of length n ending at i. Note that

• F (0, t) is the generating function for Dyck prefixes that end at the origin,

• F (1, t) is the single-variate generating function for Dyck prefixes that does not track ending
location.

Then

F (x, t) = 1 + (x+ x)tF (x, t)− xtF (0, t)
=⇒ (1− t(x+ x))F (x, t) = 1− xtF (0, t).

Solving for 1− t(x+ x) = 0 for x gives

x =
1±
√
1− 4t2

2t
.

Plugging this into the above gives

F (0, t) =
1−
√
1− 4t2

2t2

2



(the + solution is absurd). Substituting this back into the original thing again and simplifying gives us

F (x, t) =
1− 2xt−

√
1− 4t2

2t(t+ tx2 − x)
.

Thus

F (1, t) =
1− 2t−

√
1− 4t2

2t(2t− 1)
=

1

2t

(√
1 + 2t

1− 2t
− 1

)
as desired.

4 Kernel Method

What if we want to generalize this?

Question 4.1 What is the GF for the 2d-lattice walk model S = {(−1, 0), (1, 0), (0,−1), (0, 1)}, R =
N2, p = 0, T = N2?

To attack this we will use the kernel method. This is a method with two historical branches:
probabilistic (attributed to Malyshev 1971) and combinatorial (attributed to Knuth 1968). Our modern
incarnation of the method is used to solve certain systems of linear functional equations that seem
to have “too many” unknowns (like F (0, t) above). The naming comes from the idea that there is
an important “kernel” (1− t(x+ x) above) in the functional equations, which we may preserve while
removing the unknowns. This will be shown by example.

We will demonstrate the kernel method for lattice walk models by using it on a small example.

Example 4.2 Consider the lattice walk model given by S = {(−1, 0), (1, 0), (0,−1), (0, 1)}. We would
like to find the generating function for the number of walks of length n, starting at the origin, that
remain in N2. Then

S(x, y) = x+ x+ y + y.

We define a multivariate generating function that keeps track of end points

Q(x, y, t) =
∑
n≥0

∑
i,j≥0

qi,j,nx
iyj

 tn

where qi,j,n is the number of walks using S of length n that end at (i, j). Then note:

• Q(0, y, t) is the GF for walks ending on the x-axis,

• Q(x, 0, t) is the GF for walks ending on the y-axis.

Then

Q(x, y, t) = 1 + S(x, y)tQ(x, y, t)− ytQ(x, 0, t)− xtQ(0, y, t)

=⇒ xy(1− tS(x, y))Q(x, y, t) = xy − xtQ(x, 0, t)− ytQ(0, y, t).

So far we have not done anything clever. We have three “unknowns” in this equation. We would really
like to isolate Q(x, y, t), but we can’t. The genius comes from realizing the two involutions

ψ : (x, y) 7→ (x, y),

ϕ : (x, y) 7→ (x, y)

keep S(x, y) fixed, and thus keep K(x, y) = (1 − tS(x, y)) fixed. The group generated (under compo-
sition) by ψ, ϕ is {id, ψ, ϕ, ψ ◦ ϕ}. Then applying these 4 transformations to the above gives us the 4
equations

xyK(x, y)Q(x, y, t) = xy − xtQ(x, 0, t)− ytQ(0, y, t),

xyK(x, y)Q(x, y, t) = xy − xtQ(x, 0, t)− ytQ(0, y, t),

xyK(x, y)Q(x, y, t) = xy − xtQ(x, 0, t)− ytQ(0, y, t),

xyK(x, y)Q(x, y, t) = xy − xtQ(x, 0, t)− ytQ(0, y, t).

3



We are maybe in a pickle, but we notice that each unknown term of the form Q(x, 0, t) appears exactly
twice. Taking a signed sum (1)− (2)− (3) + (4) gives

xyQ(x, y, t)− xyQ(x, y, t)− xyQ(x, y, t) + xyQ(x, y, t) =
xy − xy − xy + xy

K(x, y)
.

But then each of the terms on the LHS except xyQ(x, y, t) have at least one negative power of x or y.
Thus

xyQ(x, y, t) = [xn≥0yn≥0]

(
xy − xy − xy + xy

K(x, y)

)
=⇒ Q(x, y, t) = [xn≥0yn≥0]

(
(x− x)(y − y)
xy(1− tS(x, y))

)
=⇒ Q(1, 1, t) = ∆

(
(1 + x)(1 + y)

1− txyS(x, y)

)
and we have thus found the GF for these walks. Now how do we get the elements in these sequences?

4


	Introduction
	Notation

	ACSV
	Analytic Combinatorics

	Lattice Walks
	Dyck Paths

	Kernel Method

