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Chapter 0

Introduction

This is a collection of notes based on the class MAT1502HS (Topics in Geometric Analysis: Complex
Monge-Ampère equations and Kähler geometry) taught by Freid Tong at the University of Toronto in
Winter 2026.

The goal of this course will be to introduce Kähler geometry from the view of complex Monge-
Ampère equations. We will take a broadly historical approach:

1. Yau’s resolution of the Calabi conjecture, also known as Yau’s theorem. This is a fundamental
result on the Ricci curvature of Kähler manifolds. Yau’s main contribution here was to prove a
priori estimates for the complex Monge-Ampère.

2. Generalization of Yau’s theorem to singular varieties. As before, this reduces to studying the
complex Monge-Ampère. Here it turns out we need sharp a priori estimates.

3. Degenerate complex Monge-Ampère equations, and constructing geodesics in the space of Kähler
metrics.

4. Additional topics.

0.1 Notation

We record our notation here. To add.
Bundle
additive
notation.
Definition
of ωϕ.

Notation (dfferentials). We write interchangeably

∂j =
∂

∂zj
,

∂j̄ =
∂

∂z̄j
.

Notation (Einstein notation). We use Einstein notation, that is that (when unspecified) repeated
lowered and raised indices are implicitly summed over:

AiB
i =

∑
i

AiB
i.

Notation (matrix inverses). We use raised indices indicate the inverse of a matrix, so that

AµγAνγ = δµν .
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Chapter 1

Basic Complex Geometry

Much of this should be review from Tristan’s course last term.

1.1 Complex manifolds

Definition 1.1.1 (complex manifolds). A smooth manifold M is a complex manifold of (complex)
dimension n (so real dimension 2n) if and only if we can write M =

⋃
α Uα with maps

ϕα : Uα → Cn

such that its transition functions

ϕα ◦ ϕ−1
β

∣∣∣
ϕβ(Uα∩Uβ)

: Cn → Cn

are holomorphic.

Given this data we can define holomorphic functions on M .

Definition 1.1.2 (holomorphic functions). We say a function f : M → C is holomorphic if

f ◦ ϕ−1
α : Cn → C

is holomorphic for each α.

Remark 1.1.3. This definition is okay since the transition maps are holomorphic. This collection
of holomorphic functions determines the complex structure of M . With this definition, the coordinate
charts ϕα : Uα → Cn are holomorphic coordinate charts.

Note that the local geometry of M is more or less the same as an open subset of Cn. There are
several important examples of complex manifolds.

Example 1.1.4 (complex projective space). Pn = {space of complex lines in Cn+1}. An element of
l ∈ Pn has the form l = [z0 : · · · : zn], where 0 ̸= (z0, . . . , zn) ∈ l. Here we identify [z0 : · · · : zn] ∼ [λz0 :
· · · : λzn] for any λ ∈ C∗. The coordinate charts are Ui = {[z0 : · · · : zn] : zi ̸= 0} for i = 0, . . . , n.
Here the chart maps are

ϕi : Ui → Cn

[z0 : · · · : zn] 7→
(
z0
zi
, . . . ,

ẑi
zi
, . . . ,

zn
zn

)
.

We can compute that the transition functions are

ϕi ◦ ϕ−1
j (w1, . . . , wn) = ϕi([w1 : · · · : wj−1 : 1 : wj : · · · : wn])

=

(
w1

wi
, . . . ,

ŵi

wi
, . . . ,

wj−1

wi
,
1

wi
,
wj

wi
, . . . ,

wn

wi

)
,

which are of course all holomorphic.
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To make more complex manifolds we can take distinguished subsets of complex manifolds.

Theorem 1.1.5 (holomorphic implicit function theorem). Suppose we have a holomorphic function

f : U × V ⊂ Cn
z × Cm

w → Cm

such that f(0, 0) = 0 and det( ∂f
∂w )(0, 0) ̸= 0. Then there exists a g(z) : U ′ ⊂ U → Cm holomorphic

such that g(0) = 0 and f(z, g(z)) = 0.

We can use this to get submanifolds of Pn.

Example 1.1.6 (hypersurfaces in Pn). Let f(z0, . . . , zn) : Cn+1 → C be a holomorphic homogenenous
(degree k) polynomial. Then M = {f = 0} ⊂ Pn is a complex submanifold of dimension n − 1 of Surely this

depends
on k.

Pn at all points p where f(p) = 0 and df(p) ̸= 0. Repeatedly applying the holomorphic IFT gives us
projective manifolds Mk ⊂ Pn of dimension k ≤ n.

1.1.1 Local structure of complex manifolds

We define

TCM = TM ⊗R C,
ΩCM = ΩM ⊗R C.

If M is a complex manifold, then in any holomorphic coordinate chart, TCM is locally spanned by
{∂i}ni=1 and {∂ī}ni=1 with complex coefficients. One can check that the subbundles

T 1,0M = spanC {∂i} ⊂ TCM,

T 0,1M = spanC {∂ī} ⊂ TCM,

are well-defined. This gives rise to a decomposition TCM = T 1,0M ⊕ T 0,1M . Similarly we can define
the subbundles

Ω1,0M = spanC {dzi} ⊂ ΩCM,

Ω0,1M = spanC {dz̄i} ⊂ ΩCM,

and get the decomposition ΩCM = Ω1,0M ⊕ Ω0,1M . By taking wedge products we can define

Ωk
CM =

⊕
p+q=k

Ωp,qM

where Ωp,qM is spanned locally by dzi1 ∧ · · · ∧dzip ∧dz̄j1 ∧ · · · ∧dz̄jq . The usual conjugation operation
extends to Ωp,qM → Ωq,pM as

dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq = dz̄i1 ∧ · · · ∧ dz̄ip ∧ dzj1 ∧ · · · ∧ dzjq ,

and we say that α ∈ Ωk
CM is real if α = α. There is a differential structure on ΩkM as well. We have

d : ΩkM → Ωk+1M,

where if

α =
∑

|I|+|J|=k

αIJdzI ∧ dz̄J ,

I = (i1, . . . , ip),

J = (j1, . . . , jq),

dzI = dzi1 ∧ · · · ∧ dzip ,
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then

dα =

n∑
l=1

∑
|I|+|J|=k

(
∂αIJ

∂zl
dzl ∧ dzI ∧ dz̄J +

∂αIJ

∂z̄l
dz̄l ∧ dzI ∧ dz̄J

)
.

From this we can see that in fact d : Ωp,q → Ωp+1,q ⊕ Ωp,q+1, and so we can write d = ∂ + ∂̄ (where
∂ is d projected onto the first term in this decomposition and ∂̄ projects d onto the second term). As
an exercise one can show that ∂2 = ∂̄2 = 0 and so

0 = d2 = (∂ + ∂̄)2 = ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2 = ∂∂̄ + ∂̄∂.

Thus ∂ and ∂̄ anticommute.

Definition 1.1.7 (ddbar operator). We define the ddbar operator to be the operator
√
−1∂∂̄.

Remark 1.1.8. The factor of
√
−1 makes the ddbar operator a real operator.

1.2 Holomorphic vector bundles

As one might expect, there is a notion of holomorphic vector bundles.

Definition 1.2.1 (holomorphic vector bundles). Let M =
⋃

α Uα be a complex manifold with a smooth
complex vector bundle π : E → M of complex rank r. We say E is holomorphic if there exist
trivializations {eα,µ}rµ=1 of E on Uα such that on Uα ∩ Uβ

eα,µ = t ν
αβ µeβ,ν

for some holomorphic transition functions tαβ : Uα ∩ Uβ → MatC(r × r).

A holomorphic structure on a vector bundle his gives rise to an operator

∂̄E : Γ(E) → Γ(Ω0,1 ⊗ E),

where if s = (sα)
µ(eα)µ then

∂̄Es = (∂̄s µ
α )⊗ (eα)µ. (1.1)

Note 1.2.2. We often omit the E from ∂̄E and write ∂̄.

A priori it is not clear that ∂̄ is well-defined. On Uα ∩ Uβ we have

∂̄s = (∂̄s ν
β )⊗ (eβ)ν

= ∂̄(s µ
α t ν

αβ µ)⊗ (eβ)ν

= (∂̄s µ
α )⊗ t ν

αβ µeβ,ν

= (∂̄s µ
α )⊗ eα,µ,

and so this operator ∂̄ is invariant under the change of trivialization and is well-defined.

Note 1.2.3. This does not work for ∂, as ∂tαβ is not necessarily 0.

We can define the set of holomorphic sections as

H0(M,E) = {s ∈ Γ(M,E) : ∂̄s = 0} ⊂ Γ(M,E).

Note that the collection of holomorphic sections determines the holomorphic structure of E.

Note 1.2.4. Also give a holomorphic vector bundle there exist local holomorphic trivializations {eα,µ}
near any point. We always compute in these holomorphic trivializations.
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1.2.1 Associated bundles to E

Given a holomorphic vector bundle E → M there are several associated holomorphic vector bundles.

1. E∗ → M , where we replace eαµ by its dual trivialization (e∗α)
µ and the transition maps tαβ by

(t−1
αβ)

T .

2.
∧s

E → M , with trivializations ei1 ∧ · · · ∧ eis and transition functions
∧s

tαβ ∈ End(
∧s

E). If
s = r then

∧s
E is a holomorphic line bundle.

3. E → M is an anti-holomorphic vector bundle with trivializations eαβ and transition functions
tαβ .

Example 1.2.5. If M is a complex manifold, T 1,0M and Ω1,0M are both holomorphic vector bun-
dles with trivializations {∂i}ni=1 and {dzi}ni=1 respectively. The transition functions are as follow: if
(w1, . . . , wn) is another coordinate system then

∂

∂wi
=

∂zj
∂wi

∂

∂zj
+

∂z̄j
∂wi

∂

∂z̄j
=

∂zj
∂wi

∂

∂zj

and

dwi =
∂wi

∂zj
dzj .

Note here we are using the fact that the coordinate functions zj are holomorphic.

Example 1.2.6. The canonical bundle of M is KM =
∧n

Ω1,0M = Ωn,0M . This has trivialization
dz1 ∧ · · · ∧ dzn and transition functions

dw1 ∧ · · · ∧ dwn = det

(
∂w

∂z

)
dz1 ∧ · · · ∧ dzn.

1.2.2 Hermitian metrics

A Hermitian metric on a bundle E ia s smoothly varying Hermitian inner product on the fibers of E.
In a local holomorphic trivialization {eµ}rµ=1 then

H = Hµν(e
∗)µ ⊗ (e∗)ν ∈ E∗ ⊗ E

∗
,

where Hµν is a positive-definite Hermitian matrix at each point. This gives an inner product on
sections

⟨s, t⟩H = Hµνs
µt

ν

which of course gives us a norm

|s|2H = ⟨s, s⟩H = Hµνs
µsν ≥ 0.

A Hermitian metric H on E gives rise to a Hermitian structure on all associated bundles.

Example 1.2.7. On E∗ the induced metric is H̃ = H−1, so that

H̃ = Hµνeµ ⊗ eν .

Example 1.2.8. On a line bundle any Hermitian metric is represented by a smoothly varying positive
definite 1× 1 matrix, and so the Hermitian metric is just a strictly positive smooth function h. In the
specific case of the line bundle

∧r
E, there is an induced Hermitian metric

h = detHµν .

Remark 1.2.9. Hermitian metrics always exist by a partition of unity argument.

We care about Hermitian metrics primarily because they can be used to define connections.
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1.3 Connections

A connection is a way to differentiate sections of bundles to get more sections of bundles. Recall that
we have a natural way to differentiate sections in anti-holomorphic directions (see (1.1)), but this naive
approach to differentiating does not work for holomorphic directions (since the transition functions are
not anti-holomorphic). To differentiate in holomorphic directions we must first pick a connection.

It turns out that if E is a Hermitian vector bundle (i.e., endowed with a Hermitian metric) then
there exists a natural connection.

Definition 1.3.1 (Chern connection). Let E be a Hermitian vector bundle and pick a section s = sµeµ.
Then we define the Chern connection as the connection

∇j̄s
µ = ∂j̄s

µ,

∇js
µ = Hµν∂j(Hγνs

µ).

Note 1.3.2. This looks a bit odd, but is actually natural. There is
suerly a
typo here.
The index
lowering
operation
here has
indices
that don’t
match up.

sµ
lower index−−−−−−−→ Hγνs

µ ∂j well-defined−−−−−−−−−→ ∂j(Hγνs
µ)

raise index−−−−−−−→ Hµν∂j(Hγνs
µ).

Expanding out we see

∇js
µ = ∂js

µ +A µ
j νs

ν ,

where A µ
j ν = Hµγ∂jHνγ are the associated connection coefficients. This definition induces the Chern

connection on all tensor powers of E, E∗, and E.

Example 1.3.3. Consider E∗ and a section s = sµ(e
∗)µ ∈ Γ(E∗). Then the Chern connection is

∇jsµ = ∂jsµ −A ν
j µsν .

For tensor powers then ∇ gets applied to each component of the tensor product.

Example 1.3.4. If s = sµν(e
∗)ν ⊗ eµ ∈ Γ(E ⊗ E∗) then one can show that

∇js
µ
ν = ∂js

µ
ν +A µ

j γs
γ
ν −A γ

j νs
µ
γ .

1.3.1 Curvature

Once we have a connection we can define a notion of curvature. Unlike in Euclidean space, where all
derivatives commute, this is not necessarily true for connections on an arbitrary vector bundle. The
curvature associated to a specific connection measures the failure of ∇ to commute. We compute

[∇i,∇j̄ ]s
µ = ∇i∇j̄s

µ −∇j̄∇is
µ

= ∇i(∂̄j̄s
µ)−∇j̄(∂is

µ +A µ
i γs

γ)

= ∂i∂j̄s
µ +A µ

i γ∂j̄s
γ − ∂j̄∂is

µ − ∂j̄(A
µ

i γs
γ)

= −(∂j̄A
µ

i γ)s
γ .

Definition 1.3.5 (curvature). In the spirit of the above computation, we define the curvature of a
connection as

F µ
ij̄ ν

= −∂j̄(A
µ

i ν). (1.2)

Exercise 1.3.6. Check that Fij = Fīj̄ = 0, so that F is a (matrix of) (1, 1)-forms.

This formula extends to tensor powers.

Exercise 1.3.7. Show that

[∇i,∇j̄ ]s
µ
ν = F µ

ij̄ γ
sγν − F γ

ij̄ ν
sµγ

and that

[∇i,∇j̄ ]s
µ = −F µ

jī ν
sν .
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1.3.2 Special Case of Line Bundles

Mostly we will be working with line bundles. In this case our formulas simplify significantly. If L is
a holomorphic line bundle with a Hermitian metric h (locally we abuse notation slightly and write
h = he⊗ e) then

Ai = h−1(∂ih) = ∂i log h

and

Fij̄ = −∂j̄Ai = −∂j̄∂i log h.

Then F =
√
−1Fij̄dz

i ∧ dz̄j locally looks like

F = Fh = −
√
−1∂∂̄ log h.

Note 1.3.8. Note that F is not ∂∂̄ of a global function, as we cannot take a global trivialization of L
to get a global h unless L is trivial.

Exercise 1.3.9. Check that −
√
−1∂∂̄ log h is a well-defined (1, 1)-form, despite h not being globally

defined.

In general then Fh is a closed real (1, 1)-form (as closedness is a local condition), but not an exact
form (as h is not necessarily global). It makes sense then to think about the cohomology class of Fh.

Definition 1.3.10 (first Chern class). We define

c1(L) = [Fh] ∈ H2(M,R)

to be the first Chern class of L.

It seems that c1(L) might depend on Fh, which depends on h, but this is not the case.

Theorem 1.3.11. c1(L) is independent of h.

Proof. Any other Hermitian metric is related to h by

h̃ = e−ϕh.

One can show as an exercise that such a ϕ is globally defined. Then

Fh̃ = −
√
−1∂∂̄ log h̃

= −
√
−1∂∂̄ log(e−ϕh)

= Fh +
√
−1∂∂̄ϕ.

Here then ϕ is a global function, and so [∂∂̄ϕ] = 0 (since ∂∂̄ = d∂̄) and so the result follows.

Example 1.3.12 (tautological bundle). Let M = Pn. Each point of Pn corresponds to a line in Cn+1.
There is a natural line bundle on Pn, called the tautological bundle, where the fiber above a point is
the line corresponding to the point (ie the line going through any representative of the line):

L = OPn(−1) = {(l, v) : v ∈ l} ⊂ Pn × Cn+1.

As an exercise one can compute that the transition functions are tij([z0 : · · · : zn]) =
zj
zi
, which

are indeed holomorphic. One can also check (using the maximum principle) that there are no global
holomorphic sections: H0(Pn,OPn(−1)) = {0}. The Euclidean metric on Cn+1 induces a Hermitian
metric on OPn(−1), where

|(z0, . . . , zn)|2h =

n∑
i=1

|zi|2,

and the curvature form associated to this metric is

Fh = −
√
−1∂∂̄ log(

n∑
i=1

|zi|2).
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Note 1.3.13. This is almost not defined, since zi is not well-defined, but the curvature is still well-
defined.

If you’re on the chart U0 = {z0 = 1} then

Fh = −
√
−1∂∂̄ log(1 + |z1|2 + · · ·+ |zn|2).

As a final exercise one can check that the curvature Fh with respect to the standard h is negative-
definite.

Example 1.3.14 (canonical line bundle). If M is a complex manifold there’s a distinguished line
bundle

KM =
∧n

(Ω1,0M) = spanC{dz1 ∧ · · · ∧ dzn},

called the canonical line bundle. We can take powers of KM (with the convention that K−1
M = K∗

M ).

Exercise 1.3.15 (tautological bundle and canonical bundle on Pn). Check that on Pn with chart maps
ϕj : Uj → Cn then if (w′

1, . . . , w
′
n) = ϕi ◦ ϕ−1

j (w1, . . . , wn) then

dw′
1 ∧ · · · ∧ dw′

n =

(
zj
zi

)n+1

dw1 ∧ · · · ∧ dwn.

Then the transition maps of KPn are the same as the transition maps of OPn(−1) to the power of n+1,
and so (especially for Pn) we have the relationship

KPn = OPn(−n− 1) = OPn(−1)⊗(n+1).

1.4 Kahler Metrics

Let M be a complex manifold, and fix the holomorphic tangent bundle T 1,0M . A Hermitian metric g
on M is a Hermitian metric g =

∑
i,j gij̄dz

i ∧ dz̄j on T 1,0M such that gij̄ = gjī and gij̄ζ
iζ̄j ≥ 0. A

Hermitian metric on M induces a Riemannian metric

gR =
∑
i,j

gij̄(dz
i ⊗ dz̄j + dz̄j ⊗ dzi),

and also induces a (1, 1)-form ω(·, ·) = g(J ·, ·), where

ω =
√
−1

∑
i,j

gij̄dz
i ∧ dz̄j .

Note that ω is real by the Hermitian condition.

Note 1.4.1. All these objects carry the same data.

Now a Riemannian metric induces a volume dVg, and a (1, 1)-form induces a volume form. One
can check that dVg = ωn

n! , and that locally

ωn

n!
= (det gij̄)(

√
−1dz1 ∧ dz̄1) ∧ · · · ∧ (

√
−1dzn ∧ dz̄n).

Note 1.4.2. The factors of
√
−1 here make everything real.

Definition 1.4.3 (Kahler metric). We say that a Hermitian metric is Kahler if dω = 0.

Note 1.4.4. The conditions (dω = 0), (∂ω = 0), and (∂̄ω = 0) are all equivalent as ω is real.

In local coordinates (∂ω)ijk̄ = ∂igjk̄ − ∂jgik̄, so

g Kahler ⇐⇒ ∂igjk̄ = ∂jgik̄. (1.3)

Exercise 1.4.5 (Fubini-Study metric). Check that on Pn the metric

ωFS =
√
−1∂∂̄ log(|z0|2 + · · · |zn|2)

is Kahler. This is the Fubini-Study metric on Pn. In the same way that Pn is the complex analogue
of the sphere, the Fubini-Study metric is the analogue of the round metric on the sphere.

Note 1.4.6. In this course, unless otherwise stated, all manifolds are Kahler and compact. In partic-
ular submanifolds of Kahler manifolds are Kahler, so all projective manifolds are Kahler.
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1.5 Connection and Curvature of a Kahler Metric g

Consider a section x = xi∂i ∈ Γ(T 1,0M). Recall that we can write the Chern connection as

∇j̄x
i = ∂j̄x

i,

∇jx
i = ∂jx

i + Γ i
j kx

k.

Note 1.5.1. Here the connection coefficients Γ are Christoffel symbols. They’re usually written
with A, but in this special case we use Γ.

Recall from earlier that Γ j
i k = gjl̄∂igkl̄. Then (1.3) implies that g is Kahler if and only if ∇ is Add refer-

ence.torsion-free: T j
i k = Γ j

i k − Γ j
k i = 0.

Exercise 1.5.2. Check that if E → M is a holomorphic vector bundle equipped with a Hermitian
metric H, then ∇iHµν̄ = 0.

Note 1.5.3. Recall that the Levi-Civita connection from Riemannian geometry is the unique connection
that is metric compatible and torsion-free. The Chern connection is also metric compatible, and so in
fact the two connections coincide if and only if g is Kahler.

Let’s compute the curvature of a Kahler manifold. From (1.2) we can write the Riemannian
curvature tensor in local coordinates

R l
ij̄k = −∂j̄Γ

l
i k

= −∂j̄(g
lm̄∂igkm̄)

= −glm̄∂j̄∂igkm̄

= gpm̄glq̄∂j̄gpq̄∂igkm̄.

Here we’re using Lemma A.1. Lowering the last index we can see Say how.

There’s an
error in
this com-
putation
somewhere
I think.

Rij̄kl̄ = gml̄R
m

ij̄k = −∂i∂j̄gkl̄ + gpq̄∂j̄gpl̄∂igkq̄.

Since g is Kahler we can use (1.3) to check the following.

Lemma 1.5.4 (first Bianchi identity). In the above context we have that

Rij̄kl̄ = Rkj̄il̄ = Rkl̄ij̄ ,

so that we can swap the two unbarred indices or the two barred indices. We can also take the complex
conjugate to see that Rij̄kl̄ = Rjīkl̄.

There is another similar identity that let us move around indices.

Lemma 1.5.5 (second Bianchi identity). In the above context we have that

∇iRpj̄kl̄ = ∇pRij̄kl̄.

Exercise 1.5.6. Show that the second Bianchi identity holds.

We can contract 2 indices of the Riemannian curvature tensor:

Ric = Rij̄ = R k
ij̄k .

Note that here we are using the metric to raise one of the indices. By the symmetries in the Riemannian
curvature tensor above, the result after contraction is unique, and we call it the Ricci curvature
tensor. In the case of Kahler manifolds we get a particularly nice representation of the Ricci curvature
tensor:

Rij̄ = R k
ij̄k = −∂j̄(g

km̄∂igkm̄) = −∂j̄∂i log det gkm̄ ∈ c1(−KM ). (1.4)

This is because det gkm̄ is a Hermitian metric on K∗
M , and so Rij̄ is of the form −∂∂̄ log h. Here we’re

using Lemma A.2.

Note 1.5.7. This is one of the main reasons why differential geometers care about the canonical bundle
KM : because it tells us about the Ricci curvature of a manifold.
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1.6 ∂∂̄-lemma

Given a line bundle L → M and a Hermitian metric h, we have seen that

Fh = −
√
−1∂∂̄ log h ∈ c1(L) ∈ H2(M,R),

where Fh is a real (1, 1)-form. We can ask the inverse question: given a real (1, 1)-form α =
√
−1αij̄dz

i∧
dz̄j ∈ c1(L), is α is the curvature of some Hermitian metric h̃? Any other metric can be written in the
form h̃ = e−fh so that

Fh̃ = Fh +
√
−1∂∂̄f.

If there’s no such f , there cannot be such a h̃. It follows that we want to try to find an f satisfying
the above. We cannot necessarily solve this, as two elements in c1(L) are related by a d-exact form,
not a ∂∂̄-exact form. It turns out that with the extra condition of Kahlerity, this always works.

Theorem 1.6.1 (∂∂̄-lemma). Let (M,ω) be a (compact) Kahler manifold. Then any d-closed (real)
(1, 1)-form α =

√
−1αij̄dz

i ∧ dz̄j can be written as α =
√
−1∂∂̄f for some f : M → R.

The idea for the proof comes from Hodge theory. Fix this
proof.

Proof. Let α = dη for some η = η1,0 + η0,1. As α is real then η0,1 = η1,0. Then

α = ∂η1,0 + ∂̄η1,0 + ∂η1,0 + ∂̄η1,0 = ∂̄η1,0 + ∂η1,0,

where the first and last terms vanish for degree reasons. Now write η1,0 = ηkdz
k. We want to solve

the PDE

gkl̄∇k∇l̄f = −gkl̄∇l̄ηk

for f . The LHS of this is ∆gf . Using Lemma A.4 it suffices to show that the integral of the RHS is
0, but

ˆ
M

(−gkl̄∇l̄ηk)ω
n = −

ˆ
M

∇l̄(g
kl̄ηk)ω

n = 0,

where here we are applying the divergence theorem and the fact that M has no boundary. Now

∂(η1,0 + ∂f) = ∂∗(η1,0 + ∂f) = 0 ⇐⇒ −gkl̄∇l̄(ηk + ∂kf) = 0.

Claim a. Let (M,ω) be compact Kahler. Suppose that β = βidz
i satisfies

1. ∂β = 0 (or equivalently ∇iβj = ∇jβi),

2. ∂∗β = 0 (or equivalently gkl̄∇l̄βk = 0).

Then ∂̄β = 0.

Given the claim we have that

∂̄η1,0 + ∂̄∂f = ∂̄(η1,0 + ∂f) = 0,

and so

α = ∂̄η1,0 + ∂η1,0 = 2
√
−1∂∂̄ im(f).

It just remains to prove the claim.
Proof of Claim. We first note that

∇i∇j̄βk = ∇j̄∇iβk −R l
ij̄k βl

= ∇j̄∇kβi −R l
ij̄k βl

= ∇k∇j̄βi +R l
kj̄i βl −R l

ij̄k βl

= ∇k∇j̄βi,

11



where here the second equality comes from the first condition we are assuming, and the fourth equality
comes from the first Bianchi identity (Lemma 1.5.4). Then we compute that Make sure

that this is
the correct
notation
for the
norm.

||∂̄β||2L2(M,ω) =

ˆ
M

|∂̄β|2ωωn

=

ˆ
M

gkl̄gij̄∂j̄βk∂īβlω
n

=

ˆ
M

gkl̄gij̄∇j̄βk∇īβlω
n

=

ˆ
M

gkl̄gij̄∇j̄βk∇iβlω
n

= −
ˆ
M

∇i

(
gkl̄gij̄∇j̄βk

)
βlω

n

= −
ˆ
M

gkl̄gij̄(∇i∇j̄βk)βlω
n

= −
ˆ
M

gkl̄gij̄(∇k∇j̄βi)βlω
n

= −
ˆ
M

gkl̄∇k

(
gij̄∇j̄βi

)
βlω

n

= 0.

Here equality 5 is IBP, equality 7 comes from the calculation above, equality 8 comes from the fact
that ∇kg

ij̄ = 0 (Exercise 1.5.2), and equality 9 comes from the second condition that we assume. ◁
We have shown the claim and so the result.

As a corollary to the ∂∂̄-lemma we have a positive result to the question at the beginning of the
section.

Corollary 1.6.2. Suppose that L → M is a holomorphic line bundle on a compact Kahler manifold.
Then any real (1, 1)-form α ∈ c1(L) is the curvature of some Hermitian metric H.
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Chapter 2

The Calabi Conjecture

Let (X,ω) be a compact Kahler manifold. Recall from (1.4) that [Ric(ω)] ∈ c1(−KM ). To understand
the Ricci curvature of Kahler manifolds, Calabi conjectured the following. Think

about
what num-
bering I
want here.

Conjecture 2.0.1 (Calabi Conjecture). Let α ∈ c1(−KM ) be a real (1, 1)-form. Then there exists a
unique Kahler metric ω̃ such that [ω̃] = [ω] and Ric(ω̃) = α.

This was proven by Yau in 1978 (and so sometimes this result is called “Yau’s Theorem”). Yau’s
proof ‘started’ Kahler geometry; before his proof Kahler geometry was a relatively niche field.

Remark 2.0.2. One reason why this result is important is this gives us Ricci-flat manifolds: if KM

is trivial then c1(−KM ) = {0}, so α = 0. Then Yau’s Theorem assures us that there exists a metric
ω̃ such that Ric(ω̃) = 0. This theorem also gives a strong connection between differential geometry
(i.e. Ric, which is an analogue of the Laplacian showing up in the Einstein equations) and algebraic
geometry (i.e. the study of manifolds with certain Chern classes).

2.1 unpolished stuff below

Fix a real (1, 1)-form α ∈ c1(−KM ). Our road forward will be to reduce the problem to solving a
complex Monge-Ampere equation. Fix ω. Then by the ∂∂̄-lemma (Lemma 1.6.1)

α = Ric(ω)−
√
−1∂∂̄f

for some f : M → R. Moreover any other Kahler metric ω̃ with [ω] = [ω̃] can be written as

ω̃ = ω +
√
−1∂∂̄ϕ

for some ϕ : M → R. We would like to find some ω̃ such that Ric(ω̃) = α, i.e. that

−
√
−1∂∂̄ log det

(
gij̄ +

∂2ϕ

∂zi∂z̄j

)
= Ric(ω̃) = α = −

√
−1∂∂̄ log det(gij̄)−

√
−1∂∂̄f.

Rearranging this we get

−
√
−1∂∂̄

log
det

(
gij̄ +

∂2ϕ
∂zi∂z̄j

)
det(gij̄)

− f

 = 0 =⇒ det

(
gij̄ +

∂2ϕ

∂zi∂z̄j

)
= ef+c det(gij̄).

This is the complex Monge-Ampere equation. We usually rewrite this as

(ω +
√
−1∂∂̄ϕ)n = ef+cωn.

Remark 2.1.1. It turns out that c is determined by the data by integrating on both sides: Give more
details on
what is
going on
here, and
also put
the nota-
tion for
ωϕ some-
where.

ˆ
M

ef+cωn =

ˆ
M

(ω +
√
−1∂∂̄ϕ)n =

ˆ
M

ω ∧ ωn−1
ϕ +

ˆ
M

d(∂̄ϕ ∧ ωn−1
ϕ ) =

ˆ
M

ω ∧ ωn−1
ϕ = · · · =

ˆ
M

ωn.
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It follows that c = log
[ ´

M
ωn´

M
efωn

]
. Here we absorb c into f , but must keep track of the fact that´

M
efωn =

´
M

ωn. This leads to the most popular formulation of the complex Monge-Ampere:

ωn
ϕ = efωn. (2.1)

Theorem 2.1.2 (Yau 1978). Given f : M → R such that
´
M

efωn =
´
M

ωn. Then there exists

ϕ : M → R, unique up to adding a constant, such that ωϕ > 0 and ωn
ϕ = efωn.

Calabi proved uniqueness (which is not too difficult), while Yau proved existence (which was hard
enough that it gave him a Fields Medal).

Proof (of uniqueness). Let’s say we have two solutions

ω1 = ω +
√
−1∂∂̄ϕ1,

ω2 = ω +
√
−1∂∂̄ϕ2 = ω1 +

√
−1∂∂̄ϕ

for ϕ = ϕ1 − ϕ2. Now ωn
1 = ωn

2 = (ω1 +
√
−1∂∂̄ϕ)n by (2.1). Now integrate this to get Check sub-

script on
norm in
second-last
line.

0 = −
ˆ
M

ϕ(ωn
2 − ωn

1 )

= −
ˆ
M

ϕ
[
(ω1 +

√
−1∂∂̄ϕ)n − ωn

1

]
= −

ˆ
M

√
−1ϕ∂∂̄ϕ ∧ (ωn−1

2 + ωn−2
2 ∧ ω1 + · · ·+ ω2 ∧ ωn−2

1 + ωn−1
1 )

= −
ˆ
M

√
−1ϕd∂̄ϕ ∧ (ωn−1

2 + ωn−2
2 ∧ ω1 + · · ·+ ω2 ∧ ωn−2

1 + ωn−1
1 )

= −
ˆ
M

√
−1ϕd

[
∂̄ϕ ∧ (ωn−1

2 + ωn−2
2 ∧ ω1 + · · ·+ ω2 ∧ ωn−2

1 + ωn−1
1 )

]
=

ˆ
M

√
−1dϕ ∧ ∂̄ϕ ∧ (ωn−1

2 + ωn−2
2 ∧ ω1 + · · ·+ ω2 ∧ ωn−2

1 + ωn−1
1 )

=

ˆ
M

√
−1∂ϕ ∧ ∂̄ϕ ∧ (ωn−1

2 + ωn−2
2 ∧ ω1 + · · ·+ ω2 ∧ ωn−2

1 + ωn−1
1 )

≥
ˆ
M

√
−1∂ϕ ∧ ∂̄ϕ ∧ ωn−1

1

=
1

n

ˆ
M

|∂ϕ|2ωωn
1 ,

and so ϕ is a constant. In the above computation equality 6 is IBP, equality 7 is using the fact that
∂̄ϕ ∧ ∂̄ϕ = 0, equality 8 is using the fact that the integrand has a positive term times a sum of wedge
powers of positive forms (which is positive by Lemma A.6). We are also using Lemma A.5 in equality
3 and Lemma A.7 in equality 9.

2.2 Existence: Method of Continuity

To prove the existence of a solution to (2.1) we use the method of continuity. The idea is as follows.
Consider the following family of PDEs, depending on t ∈ [0, 1]: Fiddle

with the
formatting
in this en-
vironment.

{
(ω +

√
−1∂∂̄ϕt)

n = etf+ctωn,

ω +
√
−1∂∂̄ϕt > 0,

(∗t)

where ct is chosen such that
´
M

etf+ctωn =
´
M

ωn. When t = 1 then (∗t) is the equation we want to
solve. When t = 0 then (∗t) is trivial to solve (with ϕ = 0). Then define the set

I = {t ∈ [0, 1] : (∗t) has a solution}.

If we can show that I is both open and closed then I = [0, 1] (as 0 ∈ I ̸= ∅), and so we are done.
Showing these use different tools:
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1. Openness follows from an application of IFT.

2. Closedness follows from an application of a priori estimates.
There’s
a blurb
here, in
lec4 page
15, on a
priori es-
timates.
This is
repeated
later.
Maybe
include it
here if it’s
suitable.

2.2.1 Openness

Let’s prove openness. Recall the following version of IFT.

Maybe put
this in Ap-
pendix,
but proba-
bly not.

Theorem 2.2.1 (Banach space IFT). Let B1, B2, B3 be Banach spaces. Suppose that

F : Ux × Vy ⊂ B1 ×B2 → B3

is a C1-Fréchet differentiable. If F (0, 0) = 0 and ∂F
∂y is invertible with bounded inverse, then there

exists a neighbourhood Ũ ⊂ B1 of 0 and g : Ũ → B2 such that

F (x, g(x)) = 0.

Let’s use this to prove openness. Let B1 = Rt and B2, B3 be two function spaces that are to be
determined. Define the function

F (t, ϕ) =
(ω +

√
−1∂∂̄ϕ)n

ωn
− etf+ct . (2.2)

Note that ϕt solving (∗t) is equivalent to F (t, ϕt) = 0. Clearly F (0, 0) = 0. To apply IFT we must
show that DϕF (t, ϕt) is bounded with bounded inverse (we will pick B2, B3 to ensure this). Now if ϕt

solves (∗t) then Make sure
this cal-
culation
makes
sense. In
particular
the g̃ part.

(DϕF (t, ϕt))u =
d

ds

∣∣∣∣
s=0

F (t, ϕt + su)

=
d

ds

∣∣∣∣
s=0

[
(ω +

√
−1∂∂̄(ϕt + su))n

ωn
− etf+ct

]
=

1

det gij̄

d

ds

∣∣∣∣
s=0

det
(
gij̄ + ∂i∂j̄ϕ+ s∂i∂j̄u

)
=

det(gij̄ + ∂i∂j̄ϕ)

det gij̄
g̃ij̄∂i∂j̄u,

where g̃ij̄ = gij̄ + ∂i∂j̄ϕ. Here we are applying Lemma A.3. Thus

(DϕF (t, ϕt))u =
ωn
ϕ

ωn
∆ωϕu.

We want to pick B2, B3 such that this is invertible. This is more or less just a Laplacian, so we can
use our knowledge of elliptic PDEs. Recall from Lemma A.4 that the equation ∆u = f is solvable if
and only if

´
M

fdVg = 0. This suggests that B2, B3 should have the condition
´
M

fdVg = 0 baked into
it. Schauder theory (i.e. elliptic PDE theory) gives us that

∆ : C2,α
0 (M) → Cα

0 (M)

is invertible with bounded inverse, where

C2,α
0 (M) = C2,α

0 (M, g) = C2,α(M) ∩ {
ˆ
M

f = 0}.

Note 2.2.2. If
´
M

fωn = 0 then
´
M

f ωn

ωn
ϕ
ωn
ϕ = 0. Say more

here.
Then we naturally pick

B2 = C2,α
0 (M,ω),

B3 = Cα
0 (M,ω).

Exercise 2.2.3. Verify that u 7→ ωn
ϕ

ωn∆ωϕ
u is indeed the Fréchet derivative of F , and check that it’s

actually C1.

Note 2.2.4. Generally Holder spaces are a better setting for non-linear PDEs, as the product of two
Ck,α functions is once again Ck,α, but W k,p is not closed under multiplication.
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2.3 Closedness

Closedness is the key input. Suppose that tj → t∞ and ϕj solves (∗t) for t = tj . Then we would like Fix the la-
belling is-
sues here.

to take some limit of ϕj to a solution of (∗t) for t = t∞. For the equation (∗t) to converge we require
C2 convergence (as on the LHS we have two derivatives on the LHS). To take this limit we need some
form of compactness, but C2 isn’t good enough to extract a subsequence, and instead we need slightly
better convergence to be able to apply Arzela-Ascoli. We thus need some bound of the form

||ϕj ||C2,α ≤ C

independent of j. This requires an a priori estimate for solutions of (2.1), i.e. bounds of the form
||ϕ||C2,α ≤ C, where C depends on the background data. There are typically 4 steps when it comes to
showing regularity.

1. ||ϕ||C0 ≤ C.

2. ||Dϕ||C0 ≤ C.

3. ||D2ϕ||C0 ≤ C.

4. ||ϕ||C3 ≤ C.

Once we have a C3 bound, Schauder theory gives us a bound

||ϕ||Ck,α ∈ Ck,α

for all k, α. Historically blah blah. Add his-
torial note
here

Remark 2.3.1. For finding Kahler-Einstein metrics there’s a similar setup. All estimates work except
for the C0 estimate. Then the existence of the C0 estimate is somehow related to the geometry of the
situation.

We’ll start with the precursor to the C0 estimate.

2.3.1 L2 Estimate

We want to show that if ϕ solves (2.1) then we get a boundˆ
M

|ϕ|2ωn ≤ C = C(||f ||).

Remark that we must normalize ϕ to have any hope of having an L2 bound for ϕ. Normalize ϕ
now so that

´
M

ϕωn = 0. Recall as well the following bound. Maybe
put in Ap-
pendix.

Lemma 2.3.2 (Poincaré inequality). Let (M, g) be a compact Riemannian manifold. Then there exists
a C > 0 such that for any f : M → R with

´
M

fdVg = 0 thenˆ
M

f2dVg ≤ C

ˆ
M

|∇f |2gdVg.

Now rewrite (2.1) as

ωn
ϕ − ωn = (ef − 1)ωn.

Multiply this by −ϕ and integrate to get

−
ˆ
M

ϕ(ef − 1)ωn = −
ˆ
M

ϕ(ωn
ϕ − ωn)

= −
ˆ
M

ϕ
√
−1∂∂̄ϕ ∧ (ωn−1

ϕ + ωn−2
ϕ ∧ ω + · · ·+ ωϕ ∧ ωn−2 + ωn−1)

=

ˆ
M

√
−1∂ϕ ∧ ∂̄ϕ ∧ (ωn−1

ϕ + ωn−2
ϕ ∧ ω + · · ·+ ωϕ ∧ ωn−2 + ωn−1)

≥ 1

n

ˆ
M

|∇ϕ|2ωn

≥ 1

C

ˆ
M

ϕ2ωn.
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Here we are applying more or less the same ideas we used to prove uniqueness in Yau’s Theorem
(Theorem 2.1.2), along with Lemma 2.3.2 in equality 5. Rearranging this gives us

ˆ
M

ϕ2ωn ≤ C

ˆ
|ϕ|ωn ≤ C

(ˆ
M

ϕ2ωn

)1/2

,

using Holder’s inequality in the last inequality. Then this of course gives Add to
Appendix
because
why not.

(ˆ
M

ϕ2ωn

)1/2

≤ C

as desired.
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Appendix

Here we record a few technical results.

Lemma A.1. If Aij(t) is a family of matrices then

d

dt
Aij(t) = −AljAki d

dt
Akl(t).

Proof. Use the fact that

0 =
d

dt
(AijAjk).

Lemma A.2. If Aij(t) is a family of non-degenerate matrices then

d

dt
log detAij(t) = Aij d

dt
Aij(t).

Lemma A.3. If Aij(t) is a family of non-degenerate matrices then

d

dt
detA(t) = Aij

(
d

dt
Aij(t)

)
detAij .

Lemma A.4. Let (M, g) be a compact Riemannian manifold. Then

∆gf = µ is solvable ⇐⇒
ˆ
M

µdVg = 0.

Moreover, such a solution f is unique up to the addition of a constant.

The necessity above is easy to see.

Lemma A.5. Recall from high school that

xn − yn = (x− y)(xn−1 + xn−2y + · · ·+ xyn−2 + yn−1).

This formula also works for (1, 1)-forms.

Lemma A.6. If α1, . . . , αn are non-negative (1, 1)-forms then α1 ∧ · · · ∧ αn is positive. Surely this
is non-
negative.Lemma A.7. For a (1, 1)-form α =

√
−1αij̄dz

i ∧ dz̄j then

nα ∧ ωn−1 = Trω(α)ω
n.
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