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Chapter 0O

Introduction

This is a collection of notes based on the class MAT1502HS (Topics in Geometric Analysis: Complex
Monge-Ampere equations and Kéahler geometry) taught by Freid Tong at the University of Toronto in
Winter 2026.

The goal of this course will be to introduce Kéahler geometry from the view of complex Monge-
Ampere equations. We will take a broadly historical approach:

1. Yau’s resolution of the Calabi conjecture, also known as Yau’s theorem. This is a fundamental
result on the Ricci curvature of Kahler manifolds. Yau’s main contribution here was to prove a
priori estimates for the complex Monge-Ampere.

2. Generalization of Yau’s theorem to singular varieties. As before, this reduces to studying the
complex Monge-Ampere. Here it turns out we need sharp a priori estimates.

3. Degenerate complex Monge-Ampere equations, and constructing geodesics in the space of Kéhler
metrics.

4. Additional topics.

0.1 Notation

We record our notation here.

Notation (dfferentials). We write interchangeably

0
aj_82j7
_ 0
0z

Notation (Einstein notation). We use Einstein notation, that is that (when unspecified) repeated
lowered and raised indices are implicitly summed over:

A;B' = ZAiBi.

Notation (matrix inverses). We use raised indices indicate the inverse of a matriz, so that

APYA,,, = 5" .



Chapter 1

Basic Complex Geometry

Much of this should be review from Tristan’s course last term.

1.1 Complex manifolds

Definition 1.1.1 (complex manifolds). A smooth manifold M is a complex manifold of (complex)
dimension n (so real dimension 2n) if and only if we can write M =, Uy with maps

Oq : Uy — C"
such that its transition functions

$a 0 P5' :C" > C"

$5(UaNUg)
are holomorphic.
Given this data we can define holomorphic functions on M.
Definition 1.1.2 (holomorphic functions). We say a function f : M — C is holomorphic if
fopl:C"—=C
18 holomorphic for each a.

Remark 1.1.3. This definition is okay since the transition maps are holomorphic. This collection
of holomorphic functions determines the complex structure of M. With this definition, the coordinate
charts ¢o : Uy, — C™ are holomorphic coordinate charts.

Note that the local geometry of M is more or less the same as an open subset of C™. There are
several important examples of complex manifolds.

Example 1.1.4 (complex projective space). P" = {space of complex lines in C"*1}. An element of

1 € P" has the forml = [zp : -+ : 2], where 0 # (20, ...,2,) € . Here we identify [z0 : - : zp] ~ [A20 :
-1 Azy] for any A € C*. The coordinate charts are U; = {[z0 : -+ : zp] + 2 £ 0} fori=0,...,n.
Here the chart maps are
(bi U; — c"
2 Zi z
[20 - zn] — (0,...,1,...,">.
Zi Zi Zn
We can compute that the transition functions are
gbiogi)j_l(wl,...,wn) =¢;i(fwr - rwjr 1wyt wy))
_ w1 @ Wwj—1 1 w W,
- wi""’wi7"'7 wz 7wi7wi7"'7wi )

which are of course all holomorphic.



To make more complex manifolds we can take distinguished subsets of complex manifolds.

Theorem 1.1.5 (holomorphic implicit function theorem). Suppose we have a holomorphic function
fUxVcCcClxCy—Cm

such that f(0,0) = 0 and det(%)(0,0) # 0. Then there exists a g(z) : U' C U — C™ holomorphic
such that g(0) = 0 and f(z,9(z)) = 0.

We can use this to get submanifolds of P".

Example 1.1.6 (hypersurfaces in P"). Let f(z9,-..,2,) : C"™* — C be a holomorphic homogenenous
(degree k) polynomial. Then M = {f = 0} C P" is a complex submanifold of dimension n — 1 of
P™ at all points p where f(p) = 0 and df (p) # 0. Repeatedly applying the holomorphic IFT gives us
projective manifolds M* C P™ of dimension k < n.

1.1.1 Local structure of complex manifolds

We define

TeM =TM g C,
QcM = QM r C.

If M is a complex manifold, then in any holomorphic coordinate chart, T M is locally spanned by
{0;}7_, and {05}, with complex coefficients. One can check that the subbundles

T'OM = spang {0;} C Tc M,
T M = spane {0;} C Tc M,

are well-defined. This gives rise to a decomposition Tc M = T1OM @ T%' M. Similarly we can define
the subbundles

QYOM = spang {dz;} € QcM,
Q%A = spang {d%} C QcM,

and get the decomposition QcM = QVOM @ Q%1 M. By taking wedge products we can define

kM = P arim
p+q=k

where QP9 M is spanned locally by dz;, A---Adz;, Ndzj A--- AdZz;,. The usual conjugation operation
extends to QP IM — Q4PM as

dziy N+ Ndzi, Ndzj, N+ Ndzj, = dzi, N Ndzi, Ndzj, A Ndzg,
and we say that o € QEM is real if « = @. There is a differential structure on Q¥M as well. We have
d: QM — Q¥ M,
where if

a= Z a5dzr Ndzy,

[I|+]J|=k
I=(ir,....i),
J = (jlv‘ .. 7jq)7

dZ[ = dZil AR /\le'p,



then

- Oa,7 da —
da:z Z (aleJle/\dZ[/\dEJ+ azfl“’dzmdz,AdzJ)
=1 |1]+]|=k

From this we can see that in fact d : QP9 — QPTL? @ QP9 and so we can write d = 9 4+ 0 (where
0 is d projected onto the first term in this decomposition and 9 projects d onto the second term). As
an exercise one can show that 92> = 92 = 0 and so

0=d*>=(0+0)*=09>+ 090+ 00 + 0* = 90 + d0.
Thus 8 and 9 anticommute.

Definition 1.1.7 (ddbar operator). We define the ddbar operator to be the operator V/—100.

Remark 1.1.8. The factor of \/—1 makes the ddbar operator a real operator.

1.2 Holomorphic vector bundles

As one might expect, there is a notion of holomorphic vector bundles.

Definition 1.2.1 (holomorphic vector bundles). Let M =, Un be a complex manifold with a smooth
complex vector bundle m : E — M of complex rank r. We say E is holomorphic if there exist
trivializations {ea,u}:;:l of E on U, such that on U, NUg

Cay = taﬁ”#eg,,,
for some holomorphic transition functions tap : Us N Ug — Matc(r x 7).
A holomorphic structure on a vector bundle his gives rise to an operator
O :T(E) - T(Q" ®E),
where if s = (s4)"(eq), then
Ops = (0s,1") ® (€q) - (1.1)
Note 1.2.2. We often omit the E from 0 and write 0.
A priori it is not clear that 0 is well-defined. On U, N Uz we have
ds = (0s5") @ (ep)y
= (s,"tog ) © (e3),
= (0s,") ® tog u€p.w
= (0s,) ® €a,pu»
and so this operator 0 is invariant under the change of trivialization and is well-defined.
Note 1.2.3. This does not work for 0, as Otap is not necessarily 0.

We can define the set of holomorphic sections as
H°(M,E)={s € T(M,E):0s =0} CT'(M, E).
Note that the collection of holomorphic sections determines the holomorphic structure of F.

Note 1.2.4. Also give a holomorphic vector bundle there exist local holomorphic trivializations {eq .}
near any point. We always compute in these holomorphic trivializations.



1.2.1 Associated bundles to F

Given a holomorphic vector bundle F — M there are several associated holomorphic vector bundles.

*

1. E* — M, where we replace e, by its dual trivialization (e},

(tp)"
2. N°E — M, with trivializations e;, A --- A e;, and transition functions A\”t,s € End(A° E). If
s =17 then A\° E is a holomorphic line bundle.

)* and the transition maps tog by

3. E — M is an anti-holomorphic vector bundle with trivializations €55 and transition functions
fus.

Example 1.2.5. If M is a complex manifold, T'"°M and QY°M are both holomorphic vector bun-
dles with trivializations {0;}.—_, and {dz;}._, respectively. The transition functions are as follow: if
(w1, ..., wy) is another coordinate system then

8_6zj8 82j8_6zj8

8101' B 8wi 8Zj 8w1 85j o 8wi 8Zj

and

o 8’(1)1

o sz

dwi de .

Note here we are using the fact that the coordinate functions z; are holomorphic.

Example 1.2.6. The canonical bundle of M is Ky = N" QY°M = QuOM. This has trivialization
dz1 A -+ Ndz, and transition functions

dwi A -+ A dw, = det (gw)dzl/\~~/\dzn.
z

1.2.2 Hermitian metrics

A Hermitian metric on a bundle E ia s smoothly varying Hermitian inner product on the fibers of E.
In a local holomorphic trivialization {e,}},_; then

H = Hug(e*)ﬂ (%9 (GT)V S E* ®E*,

where H,y is a positive-definite Hermitian matrix at each point. This gives an inner product on
sections

(s,tyy = H/L;s“fy
which of course gives us a norm
5|3 = (s,8)g = H,ps"3" > 0.
A Hermitian metric H on E gives rise to a Hermitian structure on all associated bundles.
Example 1.2.7. On E* the induced metric is H=H"1, so that
H=H"Ye,24e,.

Example 1.2.8. On a line bundle any Hermitian metric is represented by a smoothly varying positive
definite 1 X 1 matriz, and so the Hermitian metric is just a strictly positive smooth function h. In the
specific case of the line bundle \" E, there is an induced Hermitian metric

h = det HN;'
Remark 1.2.9. Hermitian metrics always exist by a partition of unity argument.

We care about Hermitian metrics primarily because they can be used to define connections.



1.3 Connections

A connection is a way to differentiate sections of bundles to get more sections of bundles. Recall that
we have a natural way to differentiate sections in anti-holomorphic directions (see (1.1)), but this naive
approach to differentiating does not work for holomorphic directions (since the transition functions are
not anti-holomorphic). To differentiate in holomorphic directions we must first pick a connection.

It turns out that if E is a Hermitian vector bundle (i.e., endowed with a Hermitian metric) then
there exists a natural connection.

Definition 1.3.1 (Chern connection). Let E be a Hermitian vector bundle and pick a section s = ste,,.
Then we define the Chern connection as the connection

Vst = 0;s",
VjSH = H“vaj(st“).

Note 1.3.2. This looks a bit odd, but is actually natural.

lower indez 0; well-defined raise index T
p tower wndexr -y p G5 WETCHCC o ( Hoogt) LASe MCeT  pruv g, _ght
s Hps 0;(Hyws") H"0;(Hyps").
Expanding out we see
.ol TR
Vst =0;st + A0, 8",

where A", = H"70;H,~ are the associated connection coefficients. This definition induces the Chern
connection on all tensor powers of E, E*, and E.

Example 1.3.3. Consider E* and a section s = s, (e*)"* € I'(E*). Then the Chern connection is

Visy =05, — A", 5.

v
J
For tensor powers then V gets applied to each component of the tensor product.

Example 1.3.4. If s =s" (e*)" @ e, € I'(E ® E*) then one can show that

TR g By ALY gH
Vjst, = 0;s", + A1 87, — A7 st

1.3.1 Curvature

Once we have a connection we can define a notion of curvature. Unlike in Euclidean space, where all
derivatives commute, this is not necessarily true for connections on an arbitrary vector bundle. The
curvature associated to a specific connection measures the failure of V to commute. We compute
[Vi,V;]s“ = ViV3S” — V;Vis“
= V;(058") — V;(0is" + A, “737)
= 0;0;8" + A, ”,Y@;s'Y — 0;0;5" — 0;(A,; ”,Ys”)

= (954,57

Definition 1.3.5 (curvature). In the spirit of the above computation, we define the curvature of a
connection as

=0y (AR). (1.2)
Exercise 1.3.6. Check that F;; = Fi3 = 0, so that F is a (matriz of) (1,1)-forms.
This formula extends to tensor powers.

Exercise 1.3.7. Show that
[Vi,Vi]s”u =F."s" —F

g oy vV ij v° Y

and that

Vi, V]sF = —F 57

ji v



1.3.2 Special Case of Line Bundles

Mostly we will be working with line bundles. In this case our formulas simplify significantly. If L is
a holomorphic line bundle with a Hermitian metric & (locally we abuse notation slightly and write
h = he ® €) then

A; = h™(9;h) = 9;logh
and

Then F = /=1F;;dz" A dz locally looks like
F = F), = —/—1001log h.

Note 1.3.8. Note that F is not 00 of a global function, as we cannot take a global trivialization of L
to get a global h unless L is trivial.

Exercise 1.3.9. Check that —/—1001ogh is a well-defined (1,1)-form, despite h not being globally
defined.

In general then F}, is a closed real (1,1)-form (as closedness is a local condition), but not an exact
form (as h is not necessarily global). It makes sense then to think about the cohomology class of Fj,.

Definition 1.3.10 (first Chern class). We define
c1(L) = [F,) € H*(M,R)
to be the first Chern class of L.
It seems that ¢1 (L) might depend on F}, which depends on h, but this is not the case.
Theorem 1.3.11. ¢;(L) is independent of h.
Proof. Any other Hermitian metric is related to h by

h=e ?h.
One can show as an exercise that such a ¢ is globally defined. Then
F; = —/—18d1logh
= —/—1001og(e~?h)
= Fy +v—100¢.
Here then ¢ is a global function, and so [09¢] = 0 (since &0 = dd) and so the result follows. O

Example 1.3.12 (tautological bundle). Let M = P". Each point of P" corresponds to a line in C**1.
There is a natural line bundle on P™, called the tautological bundle, where the fiber above a point is
the line corresponding to the point (ie the line going through any representative of the line):

L= 0pn(—1)={(l,v) :v €1} CP" x C""

As an exercise one can compute that the transition functions are t;j([z0 @ -+ @ 2zn]) = z—J, which
are indeed holomorphic. One can also check (using the mazimum principle) that there are no global
holomorphic sections: HO(P™, Opn(—1)) = {0}. The Euclidean metric on C"*! induces a Hermitian
metric on Opn(—1), where

n
|(Z07 e ’Zn)|%b = Z |Zi|27
i=1

and the curvature form associated to this metric is

F, = —\/—18510g(z |2:]?).
i=1



Note 1.3.13. This is almost not defined, since z; is not well-defined, but the curvature is still well-
defined.

If you’re on the chart Uy = {zp = 1} then
F, = —V/—=1001og(1 + |z1]* + - - + |2a]?).

As a final exercise one can check that the curvature Fy, with respect to the standard h is negative-
definite.

Example 1.3.14 (canonical line bundle). If M is a complex manifold there’s a distinguished line
bundle

Ky = /\n(Ql’OM) = spanc{dz; A+ ANdz,},

called the canonical line bundle. We can take powers of Ky (with the convention that K7 = K3, ).

Exercise 1.3.15 (tautological bundle and canonical bundle on P"). Check that on P™ with chart maps
¢; :U; = C” then if (wi,...,w;) =¢; 0 gf)j_l(wl, ..., wy) then

5 n+1
dw’l/\-~-/\dw;:<;) dwy A -+ A dwy,.
(3
Then the transition maps of Kpn are the same as the transition maps of Opn(—1) to the power of n+1,

and so (especially for P") we have the relationship

Kpn = Opn(—n — 1) = Opn (=1)2 D),

1.4 Kahler Metrics

Let M be a complex manifold, and fix the holomorphic tangent bundle 7"°M. A Hermitian metric g
on M is a Hermitian metric g = Zi,j gﬁdzi Adz on THOM such that 9i; = 957 and gﬁCiCj >0. A
Hermitian metric on M induces a Riemannian metric
Jr = Zgﬁ(dzi ®d7 +dF @ dz"),
4,J
and also induces a (1, 1)-form w(-,-) = g(J-,-), where
w=+v-1 Zgﬁdzi’ AdZ.
1,J
Note that w is real by the Hermitian condition.

Note 1.4.1. All these objects carry the same data.

Now a Riemannian metric induces a volume dVj, and a (1,1)-form induces a volume form. One
can check that dVy, = “r, and that locally

w—| = (det g;5)(V=1dz" Adz") A+ A (V=1d2" A dz").
n!
Note 1.4.2. The factors of \/—1 here make everything real.
Definition 1.4.3 (Kahler metric). We say that a Hermitian metric is Kahler if dw = 0.
Note 1.4.4. The conditions (dw = 0), (0w = 0), and (dw = 0) are all equivalent as w is real.
In local coordinates (0w);;z = 9ig;; — 959z, SO
g Kahler < 0,g;; = 9;9;;- (1.3)

Exercise 1.4.5 (Fubini-Study metric). Check that on P™ the metric

wrs = V—=1801og(|z0[* + - - - |2n|?)

is Kahler. This is the Fubini-Study metric on P™. In the same way that P™ is the complex analogue
of the sphere, the Fubini-Study metric is the analogue of the round metric on the sphere.

Note 1.4.6. In this course, unless otherwise stated, all manifolds are Kahler and compact. In partic-
ular submanifolds of Kahler manifolds are Kahler, so all projective manifolds are Kahler.



1.5 Connection and Curvature of a Kahler Metric g

Consider a section z = 29; € T'(T"°M). Recall that we can write the Chern connection as

Vjz' = 02",

Vja' = 0;a' + T, a”.
Note 1.5.1. Here the connection coefficients I' are Christoffel symbols. They’re usually written
with A, but in this special case we use T,

Recall from earlier that I',7, = gjiaigkf. Then (1.3) implies that ¢ is Kahler if and only if V is

. L J _
torsion-free: T, =1,7, — T}/, = 0.

Exercise 1.5.2. Check that if E — M is a holomorphic vector bundle equipped with a Hermitian
metric H, then V;H,; = 0.

Note 1.5.3. Recall that the Levi-Civita connection from Riemannian geometry is the unique connection
that is metric compatible and torsion-free. The Chern connection is also metric compatible, and so in
fact the two connections coincide if and only if g is Kahler.

Let’s compute the curvature of a Kahler manifold. From (1.2) we can write the Riemannian
curvature tensor in local coordinates

Rijkl = —35Filk
= —9;(9" 0igkm)
= _glmajaigkﬁz
= 9" 9"1059,40:9km-

Here we're using Lemma A.1. Lowering the last index we can see

Rt = 9miRie ™ = —0i05947 + 977059,10igq-
Since g is Kahler we can use (1.3) to check the following.
Lemma 1.5.4 (first Bianchi identity). In the above context we have that
R = Rygir = Riii

so that we can swap the two unbarred indices or the two barred indices. We can also take the complex
conjugate to see that Rz.; = Rz

There is another similar identity that let us move around indices.

Lemma 1.5.5 (second Bianchi identity). In the above context we have that

ViRyi1i = VpRiur.

pikl
Exercise 1.5.6. Show that the second Bianchi identity holds.

We can contract 2 indices of the Riemannian curvature tensor:

Ric= Rj; = Rz, ",

Note that here we are using the metric to raise one of the indices. By the symmetries in the Riemannian
curvature tensor above, the result after contraction is unique, and we call it the Ricci curvature
tensor. In the case of Kahler manifolds we get a particularly nice representation of the Ricci curvature
tensor:

R;; = Rijk k— —33(gkmaigkm) = —(93@' log det gim € c1(—Kpr). (1.4)
This is because det gxm is a Hermitian metric on K7}, and so R;; is of the form —00log h. Here we're
using Lemma A.2.

Note 1.5.7. This is one of the main reasons why differential geometers care about the canonical bundle
Ky because it tells us about the Ricci curvature of a manifold.

10




1.6 00-lemma
Given a line bundle L — M and a Hermitian metric h, we have seen that
F, = —/=190logh € ¢;(L) € H*(M,R),

where Fj, is areal (1, 1)-form. We can ask the inverse question: given a real (1,1)-form o = v/—Ta;;dz"A

dz’ € c1(L), is a is the curvature of some Hermitian metric h? Any other metric can be written in the
form h = e~/h so that

Fj, = Fp +V-190f.

If there’s no such f, there cannot be such a h. It follows that we want to try to find an f satisfying
the above. We cannot necessarily solve this, as two elements in c1(L) are related by a d-exact form,
not a dd-exact form. It turns out that with the extra condition of Kahlerity, this always works.

Theorem 1.6.1 (90-lemma). Let (M,w) be a (compact) Kahler manifold. Then any d-closed (real)
(1,1)-form a = v/=layzdz" Adz? can be written as o = /=190 f for some f: M — R.

The idea for the proof comes from Hodge theory.
Proof. Let a = dn for some n = 1% +7%1. As «a is real then n*' = 1.0, Then
a =0t +9n"0 + ont0 + nt0 = an"" + anto,

where the first and last terms vanish for degree reasons. Now write n' = n,dz*. We want to solve
the PDE

VeV = —g" Vi,

for f. The LHS of this is Ay f. Using Lemma A.4 it suffices to show that the integral of the RHS is
0, but

[ o Vmen == [ vigt e =o.
M M
where here we are applying the divergence theorem and the fact that M has no boundary. Now
O™ +0f) =" (" +0f) =0 = —g"'Vi(m + Ohf) = 0.

Claim a. Let (M,w) be compact Kahler. Suppose that 3 = B;dz" satisfies

1. 08 =0 (or equivalently V;58; = V;f;),

2. 9B =0 (or equivalently gF'V;B, = 0).
Then 053 = 0.

Given the claim we have that

ot +90f =0n"°+0f) =0,
and so
a=0n'0 + ont0 = 2¢/=199 im(f).

It just remains to prove the claim.
Proof of Claim. We first note that

ViViBr = ViViBk — Ry, ' B
= V;VibBi = Ry ' By
= ViV;iBi+ Ry, ' B — Rz, ' B
= Vi V3B,

11

Fix this
proof.



where here the second equality comes from the first condition we are assuming, and the fourth equality
comes from the first Bianchi identity (Lemma 1.5.4). Then we compute that

10812 ar = | 1082

= / 9" 9" 05 3,0 Br”
M

- / MgV BT B
M

= / g VB,V B
M

-~ / Vi (gkfgiivgﬂk) Biw™
M

=— / g9 (Vi3580 B
M

=- / 9"g" (Vi V3 8:) Bru™
M

= - / g1V (7V;6:) Breo”
M

—0.

Here equality 5 is IBP, equality 7 comes from the calculation above, equality 8 comes from the fact
that Vg = 0 (Exercise 1.5.2), and equality 9 comes from the second condition that we assume. <
We have shown the claim and so the result. O

As a corollary to the d9-lemma we have a positive result to the question at the beginning of the
section.

Corollary 1.6.2. Suppose that L — M is a holomorphic line bundle on a compact Kahler manifold.
Then any real (1,1)-form o € ¢1(L) is the curvature of some Hermitian metric H.

12



Chapter 2

The Calabi Conjecture

Let (X,w) be a compact Kahler manifold. Recall from (1.4) that [Ric(w)] € ¢1(—Kpr). To understand
the Ricci curvature of Kahler manifolds, Calabi conjectured the following.

Conjecture 2.0.1 (Calabi Conjecture). Let o € ¢ (—Kpr) be a real (1,1)-form. Then there exists a
unique Kahler metric @ such that [©] = [w] and Ric(@) = a.

This was proven by Yau in 1978 (and so sometimes this result is called “Yau’s Theorem”). Yau’s
proof ‘started’ Kahler geometry; before his proof Kahler geometry was a relatively niche field.

Remark 2.0.2. One reason why this result is important is this gives us Ricci-flat manifolds: if Ky
is trivial then c1(—Kyr) = {0}, so a« = 0. Then Yau’s Theorem assures us that there exists a metric
@ such that Ric(w) = 0. This theorem also gives a strong connection between differential geometry
(i.e. Ric, which is an analogue of the Laplacian showing up in the Finstein equations) and algebraic
geometry (i.e. the study of manifolds with certain Chern classes).

2.1 unpolished stuff below

Fix a real (1,1)-form o € ¢1(—=Kus). Our road forward will be to reduce the problem to solving a
complex Monge-Ampere equation. Fix w. Then by the 00-lemma (Lemma 1.6.1)

o = Ric(w) — V—100f
for some f: M — R. Moreover any other Kahler metric @ with [w] = [®] can be written as
O =w+V—189¢
for some ¢ : M — R. We would like to find some @ such that Ric(@) = «, i.e. that

9%
821-6,@

—v/—1001og det <gi3 + ) = Ric(@) = a = —v/—1901og det(g;;) — V—100f.

Rearranging this we get

det (gij + —Bzza(z;j)
det(g;7)

0%¢

—/=100 [ log 5295,
10Z;

—f] =0 = det (gij + > =efte det(g;5)-

This is the complex Monge-Ampere equation. We usually rewrite this as
(w+ V=100p)" = e Tewm.

Remark 2.1.1. It turns out that c is determined by the data by integrating on both sides:

/ef“w”:/(w—kv—laé(j))”:/ w/\wg_l—k/ d(éqﬁ/\wg_l)z/ w/\w;_lz---z/ w™.
M M M M M M

13




It follows that ¢ = log{ Vi } Here we absorb ¢ into f, but must keep track of the fact that

fM efwn
fM efw = fM w™. This leads to the most popular formulation of the complex Monge-Ampere:

wg = efwm. (2.1)
Theorem 2.1.2 (Yau 1978). Given f : M — R such that [,,efw™ = [, w™. Then there exists
¢ : M — R, unique up to adding a constant, such that wy >0 and wy = efwn.

Calabi proved uniqueness (which is not too difficult), while Yau proved existence (which was hard
enough that it gave him a Fields Medal).

Proof (of uniqueness). Let’s say we have two solutions

w1 =w+V —185¢1,
Wy = w + V —185(252 =wi + vV —135(,25

for ¢ = ¢y — pa. Now w} = w§ = (w1 + vV/—199¢)™ by (2.1). Now integrate this to get
0=~ [ oz —u)

=— /M ¢ [(w1 + V—-100¢)" — wi']
- —/M V16009 A (w3 +wh P Awr o wp AP wp )
=— /M V=1¢dd¢ A (wy ™! +wy™F Awr 4 Fwp AP T FwpT)
= _/M V=16d[0¢ A (w3 + w3 P Awr + - Fwg AP + W)
:/M\/—_1d¢/\5¢/\(w£’_1 twi TP AW+ wa Awl TP W)
:/M\/—_laqb/\é_kb/\(w;_l+w3_2/\w1+"'+w2 AP+ wp™h)
Z/M V=10 N dp AWt

1
— 0 2. n
- [ oo,

and so ¢ is a constant. In the above computation equality 6 is IBP, equality 7 is using the fact that
0¢ N ¢ = 0, equality 8 is using the fact that the integrand has a positive term times a sum of wedge
powers of positive forms (which is positive by Lemma A.6). We are also using Lemma A.5 in equality
3 and Lemma A.7 in equality 9. O

2.2 Existence: Method of Continuity

To prove the existence of a solution to (2.1) we use the method of continuity. The idea is as follows.
Consider the following family of PDEs, depending on ¢ € [0, 1]:

(w+ V/—190¢p,)" = etfteiwn, (+2)
w+V=100¢, >0, '

where ¢; is chosen such that [, e//*w™ = [, w". When ¢ =1 then (%) is the equation we want to
solve. When ¢ = 0 then () is trivial to solve (with ¢ = 0). Then define the set

I={te]0,1]: (%) has a solution}.
If we can show that I is both open and closed then I = [0,1] (as 0 € I # 0), and so we are done.

Showing these use different tools:
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1. Openness follows from an application of IFT.

2. Closedness follows from an application of a priori estimates.

2.2.1 Openness

Let’s prove openness. Recall the following version of IFT.

Theorem 2.2.1 (Banach space IFT). Let By, By, B3 be Banach spaces. Suppose that
F:U; xVy CBy xBy— B3

is a C'-Fréchet differentiable. If F(0,0) = 0 and %—5 is invertible with bounded inverse, then there
exists a neighbourhood U C By of 0 and g : U — By such that

F(z,g(x)) = 0.

Let’s use this to prove openness. Let By = R; and By, B3 be two function spaces that are to be
determined. Define the function

F(tvd)) =

Note that ¢; solving (#;) is equivalent to F(t,¢:) = 0. Clearly F(0,0) = 0. To apply IFT we must
show that DgF (¢, ¢;) is bounded with bounded inverse (we will pick B, B3 to ensure this). Now if ¢;
solves (#;) then

(w+ v/—1904)" _thter

. (2.2)

d
(DoF (1,00 = | F(t,00 4 su)
S1s=0
_d (W +v/=190(¢s + su))™ otite
ds|,_o wn
= L AT et (g + 0,056 + s0,05u)
N det g;; ds|,_ 9ij T % 5019
B det(gﬁ + @'ajgﬁ)

G 8;05u
det gz.; g (i Bat)

where g,; = g;; + 0;0;¢. Here we are applying Lemma A.3. Thus

wn
(Do F (1, 61))u = —~ Aw.

We want to pick By, B3 such that this is invertible. This is more or less just a Laplacian, so we can
use our knowledge of elliptic PDEs. Recall from Lemma A.4 that the equation Au = f is solvable if
and only if [,, fdVy = 0. This suggests that By, B3 should have the condition [, fdV; = 0 baked into
it. Schauder theory (i.e. elliptic PDE theory) gives us that

A:CPM(M) — C§(M)

is invertible with bounded inverse, where

C2°(M) = C2(M, g) = C2(M) N { /M f=0}.

Note 2.2.2. If [, fu" =0 then [, [} = 0. -
3

Then we naturally pick

By = C7%(M,w),

B3 = Cg(M, w).
Exercise 2.2.3. Verify that u — %%A%u is indeed the Fréchet derivative of F, and check that it’s
actually C*.

Note 2.2.4. Generally Holder spaces are a better setting for non-linear PDEs, as the product of two
C*e functions is once again C*, but W*P is not closed under multiplication.
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2.3 Closedness

Closedness is the key input. Suppose that t; — to, and ¢; solves (x;) for ¢t = ¢;. Then we would like
to take some limit of ¢; to a solution of (#;) for t = t.. For the equation (%) to converge we require
C? convergence (as on the LHS we have two derivatives on the LHS). To take this limit we need some
form of compactness, but C? isn’t good enough to extract a subsequence, and instead we need slightly
better convergence to be able to apply Arzela-Ascoli. We thus need some bound of the form

l|9jllc2e < C

independent of j. This requires an a priori estimate for solutions of (2.1), i.e. bounds of the form
[|¢]|c2.« < C, where C depends on the background data. There are typically 4 steps when it comes to
showing regularity.

L [¢llco < C.
2. ||Dgllco < C.
3. [[D*¢||co < C.
4. |[glles < C.

Once we have a C3 bound, Schauder theory gives us a bound

||¢||C’°a € Ck,oc
for all k, . Historically blah blah.

Remark 2.3.1. For finding Kahler-FEinstein metrics there’s a similar setup. All estimates work except
for the C° estimate. Then the existence of the CO estimate is somehow related to the geometry of the
situation.

We'll start with the precursor to the C¥ estimate.

2.3.1 [? Estimate
We want to show that if ¢ solves (2.1) then we get a bound

[ 1ePor < o =cqifl).
M

Remark that we must normalize ¢ to have any hope of having an L? bound for ¢. Normalize ¢
now so that [ u @w™ = 0. Recall as well the following bound.

Lemma 2.3.2 (Poincaré inequality). Let (M, g) be a compact Riemannian manifold. Then there exists
a C > 0 such that for any f: M — R with fodVg =0 then

/ fav, < / V12V,
M M

Now rewrite (2.1) as
wy —w" = (ef —1)w™.

Multiply this by —¢ and integrate to get

- [ ot e == [ ot —am)
:_/ ¢\/__185¢/\(W2_1+wg_2Aw+...+w¢/\wn—2+wn—1)
M

= /M V=10 NI N (Wi +wh P Aw -+ Fwp Aw 2w

1
—/ V0
nJym

1 2
> — n
= C/MM

%
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Here we are applying more or less the same ideas we used to prove uniqueness in Yau’s Theorem
(Theorem 2.1.2), along with Lemma 2.3.2 in equality 5. Rearranging this gives us

| ¢ar<c [ <c ( / ¢2w") -

using Holder’s inequality in the last inequality. Then this of course gives

1/2
(fyoer) <e
M

as desired.
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Appendix

Here we record a few technical results.
Lemma A.1. If A;;(t) is a family of matrices then

e 4
ZAY(H) = — A AR
th (t) AT A 7 Apri(t).

Proof. Use the fact that

d

0=

(AY Ajp).
Lemma A.2. If A;;(t) is a family of non-degenerate matrices then

d o d
Sl ()= AT A
g7 logdet A;;(t) = A pr A (t).

Lemma A.3. If A;;(t) is a family of non-degenerate matrices then

d o (d
—_ — AU A.. ..
Zrdet A1) = A ( A (t)) det A;;.

Lemma A.4. Let (M,g) be a compact Riemannian manifold. Then
Agf = is solvable <= / pudVy = 0.
M

Moreover, such a solution f is unique up to the addition of a constant.
The necessity above is easy to see.
Lemma A.5. Recall from high school that
=yt = (z—y) (@ 2" Py a4y ).
This formula also works for (1,1)-forms.

Lemma A.6. If ay,...,a, are non-negative (1,1)-forms then ay A -+ A ay, 18 positive.

Lemma A.7. For a (1,1)-form o = \/—1a;;dz" Adz’ then

na Aw" ™t = Tr, (a)w™.
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