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11.3 THM: Rouché . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5

12 Lecture 12 12-1
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MATH 466 Fall 2020

Lecture 1: September 3

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

1.1 Introduction to Complex Numbers

The set of complex numbers C is essentially R2 but with extra structure, notably that
i2 = −1. Here are some basic facts about complex numbers (with z = a+ bi):

1. (a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i

2. λ(a+ bi) = λa+ λbi

3. (a1 + b1i)(a2 + b2i) = (a1a2 − b1b2) + (a1b2 + a2b1)i

4. z = a− bi

5. |z| =
√
a2 + b2

6. z · z = a2 + b2 = |z|2

7. z1 + z2 = z1 + z2

8. z1 · z2 = z1 · z2

9. ℜ(z) = a = z+z
2

10. ℑ(z) = b = z−z
2i = −i · z−z

2

11. 1
z = z

|z|2 for z ̸= 0

Facts 1 to 3 make C a field with the additive identity (0 + 0i) and the multiplicative
identity (1+0i). The complex conjugate (from 4) ’flips’ the number across the real line.
Fact 11 is implied directly by fact 6.

Polar Form

Consider z = a+ bi. Then you can express the same z in polar form (r, θ), with z = reiθ,
r ≥ 0, and θ ∈ [0, 2π). To convert:

• a = r cos (θ) , b = r sin (θ)

• r = |z| , θ = arg(z)

1-1
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Which lead to: z = a + bi = r
(
cos (θ) + i sin (θ)

)
. This leads to the multiplication

tricks:

with z1 = r1
(
cos (θ1) + i sin (θ1)

)
and z2 = r2

(
cos (θ2) + i sin (θ2)

)
• z1 · z2 = r1 · r2

(
cos (θ1 + θ2) + i sin (θ1 + θ2)

)
• 1

z = 1
r

(
cos (−θ) + i sin (−θ)

)
• zn = rn

(
cos (nθ) + i sin (nθ)

)
.

1.2 Introduction to Complex Functions

The big idea of complex analysis is to study functions that are differentiable in the
complex sense. We study functions f : Ω −→ C with Ω ⊆ C, Ω open and connected
(called a domain).

Definition 1.1 (Holomorphism) f : Ω −→ C is said to be holomorphic if ∀z0 ∈ Ω,
the following limit exists:

lim
h−→0

f(z0 + h)− f(z0)
h

=: f ′(z0) ∈ C

The fact that h ∈ C is crucial; h can approach z0 from anywhere, and the limit must
be the same and exist no matter the approach. Here is an example of a non-holomorphic
function:

Counterexample 1.2 f(z) = ℜ(z), Ω = C is not holomorphic as (letting z = z1 + iz2
and h = h1 + ih2):

f ′(z) = lim
h−→0

f(z + h)− f(z)
h

= lim
h−→0

z1 + h1 − z1
h1 + ih2

= lim
h−→0

h1
h1 + ih2

(if h1 = 0) = lim
h−→0

0

ih2
= 0

(if h2 = 0) = lim
h−→0

h1
h1

= 1

which are not equal.

Lemma 1.3 If Ω ⊂ C, f, g : Ω −→ C holomorphic, then the following are holomorphic
and expand in the following ways:

• f + g; (f + g)′ = f ′ + g′

1-2



Lecture 1: September 3

• f · g; (f · g)′ = f ′ · g + f · g′

• f
g ;
(
f
g

)′
= f ′g−fg′

g2
for every x0 such that g(x0) ̸= 0

• if f : Ω −→ Ω′ ⊂ C and g : Ω′ −→ C are hol’c
then (g ◦ f) is also hol’c and (g ◦ f)′(z) = g′(f(z)) · f ′(z)

Proof: The proof of these facts are identical to the real case, and as such excluded.

We can view a complex function f : Ω −→ C as a function f : U −→ R2 with U ⊂ R2.
In this sense then we can write

f(z) = f(x+ yi) = f(x, y) = ℜ(f(x, y)) + iℑ(f(x, y))
= u(x, y) + iv(x, y)

Note that u(x, y), v(x, y) ∈ R, and that when added together (along with the i) they
map from R2 to R2.

1.2.1 Cauchy-Riemann Equations

We now want to see what f(x, y) being holomorphic implies for u(x, y) and v(x, y). The
idea is to copy what was done in counterexample (1.2), and consider the limit from the
horizontal axis and from the vertical axis.

For now we only consider one direction: what is implied about u(x, y) and v(x, y)
when f(x, y) is holomorphic?

Theorem 1.4 (Cauchy-Riemann Equations) Let f : U −→ R2 holomorphic with
U ⊂ R2. Let f(x, y) = u(x, y) + iv(x, y). Then ∂u

∂x = ∂v
∂y and ∂u

∂y = − ∂v
∂x .

Proof: Let f(z) be holomorphic. Then:

lim
h−→0

f(z + h)− f(z)
h

exists.

Now let h = h1 + 0i (’horizontal’ limit). This yields:

f ′(z) = lim
h1−→0

f(x+ h1, y)− f(x, y)
h1

=
∂f

∂x
(z) =

∂u

∂x
+ i

∂v

∂x
.

Doing the same with h = 0 + ih2 (’vertical’ limit) yields:

f ′(z) = lim
h2−→0

f(x, y + h2)− f(x, y)
ih2

=
1

i

∂f

∂y
(z) = −i∂f

∂y
(z) = −i∂u

∂y
+
∂v

∂y
.

1-3
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Since f(z) is holomorphic, these two different approaches must yield equal results.
Note also that two complex expressions are only equal if their real parts are equal and
their complex parts are equal. This yields:

f = u+ iv holomorphic =⇒

∂u
∂x = ∂v

∂y ,
∂u
∂y = − ∂v

∂x .

And we are done.

These are called the Cauchy-Riemann equations, and they are very important for
this class and will be studied in the future. This implies that if f(x, y) is holomorphic,
then its components u(x, y) and v(x, y) must satisfy this system of 2 partial differential
equations.

Remark 1.5 Recall from section (1.1), facts 9 and 10, that given a complex number
z = x + iy and its complex conjugate z = x − iy, we can recover the full information
about x and y using x = z+z

2 and y = b = z−z
2i . We can thus think of a function f(x, y)

as a function ”f(z, z)”. This class will not use this form.

This way of writing leads to the question of the value of f(z) differentiated with respect
to z and z:

∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
=

1

2

∂f

∂x
− i

2

∂f

∂y

∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
=

1

2

∂f

∂x
+
i

2

∂f

∂y

which lead to
∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
These are called the Wirtinger Derivatives. They are useful only for the following

corollaries:

Corollary 1.6 ∂f
∂z = 0 ⇔ f(z) satisfies the Cauchy-Riemann equations.

Proof: By the Wirtinger Derivatives we get:

∂f

∂z
=

1

2

(
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

)
= 0
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Matching up the real and the imaginary portions leads to:

∂u

∂x
=
∂v

∂y

and
∂u

∂y
= −∂v

∂x

The Cauchy-Riemann equations.

This suggests that a function f(z) is holomorphic if ∂f
∂z = 0, or if f(z) does not depend

on z. An example of this in action is the fact that f(z) = z is not holomorphic.

In the same vein we have the following corollary:

Corollary 1.7 Assume f(z) to be holomorphic. Then ∂f
∂z = f ′(z).

Proof: By the Wirtinger Derivatives then:

∂f

∂z
=

1

2

(
∂u

∂x
+ i

∂v

∂x
− i∂u

∂y
+
∂v

∂y

)
=

1

2

(
∂u

∂x
+
∂u

∂x
+ i

∂v

∂x
+ i

∂v

∂x

)
=
∂u

∂x
+ i

∂v

∂x

=
∂f

∂x
(apply holc) = f ′(z)

And we are done.

These two corollaries can be combined to the following theorem:

Theorem 1.8 Let f = u+ iv : Ω −→ C and assume f is C1 (implies that u’ and v’ are
continuous and exist). Assume that f(z) satisfies the Cauchy-Riemann equations. Then
f(z) is holomorphic.

Proof: u(x, y) and v(x, y) are assumed to be continuous. This gives, using the Taylor
Expansion formula:

u(x+ h1, y + h2)− u(x, y) =
∂u

∂x
h1 +

∂u

∂y
h2 +|h|ψ1(h)

v(x+ h1, y + h2)− v(x, y) =
∂v

∂x
h1 +

∂v

∂y
h2 +|h|ψ2(h)

where h = h1 + ih2 and ψ1(h), ψ2(h)
h→0−−−→ 0.
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f(z + h)− f(z) = u(x+ h1, y + h2)− u(x, y) + i(v(x+ h1, y + h2)− v(x, y))

=
∂u

∂x
h1 +

∂u

∂y
h2 + i

(
∂v

∂x
h1 +

∂v

∂y
h2

)
+|h| (ψ1(h) + iψ2(h))

(apply CR) =

(
∂u

∂x
− i∂u

∂y

)
(h1 + ih2) +|h| (ψ1(h) + iψ2(h))

=

(
∂u

∂x
− i∂u

∂y

)
(h) +|h| (ψ1(h) + iψ2(h))

⇓

f(z + h)− f(z)
h

=

(
∂u

∂x
− i∂u

∂y

)
(z) +

���������:0
(ψ1(h) + iψ2(h))

This implies that f(z) is holomorphic.

Remark 1.9 Combining theorem (1.4) and theorem (1.8) shows that f holomorphic
⇐⇒ f satisfies the Cauchy-Riemann equations.

Remark 1.10 If you view f(z) as (u(x, y), v(x, y)) and assume f(z) is holomorphic.
Computing the Jacobian matrix of (u,v) times a vector containing h1 and ih2 gives:(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)(
h1
ih2

)
=
∂u

∂x
h1 + i

∂u

∂y
+
∂v

∂x
h1 + i

∂v

∂y
h2

=
∂u

∂x
h1 +

∂u

∂y
h2 + i

(
∂v

∂x
h1 +

∂v

∂y
h2

)
=

(
∂u

∂x
− i∂u

∂y

)
h

= f ′(z)h

This implies that provided f is holomorphic, the action of the Jacobian on this vector
is approximately the same as the mess up above.

Remark 1.11 We have that:∣∣∣∣∣∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣ CR
=

∣∣∣∣∣ ∂u
∂x

∂u
∂y

−∂u
∂y

∂u
∂x

∣∣∣∣∣
=

(
∂u

∂x

)2

+

(
∂u

∂y

)2

=
∣∣f ′(z)∣∣2 ≥ 0

since we saw earlier that f ′(z) =
(
∂u
∂x − i

∂u
∂y

)
. This shows that the determinant of the

Jacobian is non-negative, and is thus orientation-preserving (as long as the determinant
is not equal to 0).
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Lecture 2: September 8

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

2.1 Complex Power Series

Definition 2.1 Consider a sequence {an}∞n=0 ⊂ C. Then the complex series defined
by this sequence is

∑∞
n=0 anz

n ∈ C.

Proposition 2.2 Given a power series f(z) =
∑∞

n=0 anz
n then ∃R ∈ [0,∞] such that

1. If |z| < R then f(z) converges absolutely (i.e.
∑∞

n=0|an||z|
n <∞),

2. If |z| > R then f(z) diverges.

Furthermore:

R =
1

lim sup
n→∞

|an|
1
n

.

This R is called the radius of convergence of f(z).

Proof: Let L = lim sup
n→∞

|an|
1
n . Assume 0 < L <∞. Let R = 1

L .

1. Suppose |z| < R = 1
L . Since the inequality is strict ∃ε > 0 s.t. r := (L+ ε)|z| < 1.

By definition |an|
1
n ≤ L+ ε for large n. Then:

|an||z|n ≤
(
(L+ ε)|z|

)n
= rn

⇓
N∑

n=0

|an||z|n ≤
N∑

n=0

rn ← converges.

2. Suppose |z| > R. Choose ε > 0 s.t. r := (L − ε)|z| > 1. By definition ∃nj s.t.∣∣anj

∣∣ 1
nj > (L− ε) ∀j. Hence:∣∣anj

∣∣|z|nj ≥ ((L− ε)|z|)nj = rnj

⇓∑
j

∣∣anj

∣∣|z|nj ≥
∑
j

rnj ← diverges.
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And we are done.

Theorem 2.3 Let f(z) =
∑∞

n=0 anz
n with Rf = R > 0. Let DR = DR(0) = { z ∈ C : |z| < R }.

Then f(z) is holomorphic on DR, with f
′(z) =

∑∞
n=1 nanz

n−1 and Rf ′ = Rf .

Proof: Let g(z) =
∑∞

n=1 nanz
n−1. Then Rg = Rf since:

lim sup
n→∞

|nan|
1

n−1 = lim sup
n→∞

(
|nan|

1
n
) n

n−1

= lim sup
n→∞

(
�

���
1

|n|
1
n |an|

1
n
)
���* 1n
n−1 = lim sup

n→∞
|an|

1
n .

Given z0 ∈ DR choose r > 0 s.t. |z0| < r < R. Then for every N ≥ 1 let:

SN (z) =

N∑
n=0

anz
n ← converges

EN (z) =
∞∑

n=N+1

anz
n ← converges on DR

Then f(z) = SN (z) + EN (z) on DR. If h is such that |z0 + h| < r, then

f(z0 + h)− f(z0)
h

− g(z0) =
SN (z0 + h)− SN (z0)

h
− S′

N (z0) 1

+ S′
N (z0)− g(z0) 2

+
EN (z0 + h)− EN (z0)

h
3

We now show that for large N , these lines all go to zero.

3 : ∣∣∣∣EN (z0 + h)− EN (z0)

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣∣∣(z0 + h)n − zn0

h

∣∣∣∣︸ ︷︷ ︸
an−bn=(a−b)(an−1+···+bn−1)

=

∞∑
n=N+1

|an|

∣∣∣∣∣(z0 + h− z0)((z0 + h)n−1 + · · ·+ (z0)
n−1)

h

∣∣∣∣∣
≤

∞∑
n=N+1

|an|

∣∣∣∣∣h(rn−1 + · · ·+ rn−1)

h

∣∣∣∣∣ =
∞∑

n=N+1

|an|
∣∣nrn−1

∣∣.
This is the tail of the power series g(z), but we know that g(z) converges absolutely
on DR. Thus:∣∣∣∣EN (z0 + h)− EN (z0)

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣nrn−1

∣∣ N→∞−−−−→ 0.
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2 :

∣∣S′
N (z0)− g(z0)

∣∣ =
∣∣∣∣∣∣
N∑

n=1

nanz
n−1
0 −

∞∑
n=1

nanz
n−1
0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

n=N+1

nanz
n−1
0

∣∣∣∣∣∣
which goes to 0 for big N.

1 : Note that SN (z) is holomorphic at z = z0, as it is a polynomial. Thus:

SN (z0 + h)− SN (z0)

h
− S′

N (z0)→ 0

Combining these three points, we see that for N sufficiently large,∣∣∣∣f(z0 + h)− f(z0)
h

− g(z0)
∣∣∣∣→ 0,

and we are done.

Corollary 2.4 A power series with R > 0 is infinitely many times complex differentiable
on the disk DR, and the higher derivatives are obtained by term-wise differentiation of
the elements in the power series.

Remark 2.5 We can consider power series centered at some point z0 ∈ C (until now
we have been considering the special case z0 = 0) with the form:

f(z) =

∞∑
n=0

an(z − z0)n

with f ′(z) =
∞∑
n=1

nan(z − z0)n−1

...

This has the same radius of convergence as you would expect, but it is convergent on
DR(z0) = { z ∈ C : |z − z0| < R }.

Example 2.6 (Geometric Power Series) A standard example of a power series is:

f(z) =
∞∑
n=0

zn,

→ R = 1,

f(z0) =
N∑

n=0

(z0)
n =

1− zN+1
0

1− z0
N→∞−−−−→ 1

1− z0
.
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Example 2.7 (Exponential Power Series) A second standard power series is:

ez :=
∞∑
n=0

zn

n!
,

R =∞.

ez is a holomorphic function on C. Clearly if x ∈ R ⊂ C then ex is the usual exponential
function. Note that:

(ez)′ =

 ∞∑
n=0

zn

n!

′

=

∞∑
n=1

�n · zn−1

�n · (n− 1)!
=

∞∑
n=0

zn

n!
= ez.

Further note that:

ez+w = ez · ew.

2.2 Properties of ez

We now consider some interesting aspects of the function ex.

2.2.1 Definition of cos(z) and sin(z)

Consider θ ∈ R. Then it is a well-known fact that:

eiθ =

∞∑
n=0

(iθ)n

n!

=

 ∞∑
n=0

(−1)n θ2n

(2n)!


︸ ︷︷ ︸

cos(θ)

+i ·

 ∞∑
n=0

(−1)n θ2n+1

(2n+ 1)!


︸ ︷︷ ︸

sin(θ)

= cos(θ) + i sin(θ).

Remark 2.8 If z ̸= 0, let θ = arg(z). Then z = |z| · eiθ.

Remark 2.9 Consider now the function eiz, z ∈ C. Then:

eiz =

 ∞∑
n=0

(−1)n z2n

(2n)!


︸ ︷︷ ︸

=: cos(z)

+i ·

 ∞∑
n=0

(−1)n z2n+1

(2n+ 1)!


︸ ︷︷ ︸

=: sin(z)

.

The functions cos(z) and sin(z) are both holomorphic functions ∀z ∈ C, which gives
us the complex version of Euler’s formula:

eiz = cos(z) + i sin(z)
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Note that:

cos(−z) = cos(z)

sin(−z) = − sin(z)

⇓
e−iz = cos(z)− i sin(z)

⇓

cos(z) =
eiz + e−iz

2

and sin(z) =
eiz − e−iz

2i

Definition 2.10 (Analytic Functions) Ω ⊂ C a domain, f : Ω → C. We say that
f is analytic (on Ω) if ∀z0 ∈ Ω, ∃r > 0 s.t. Dr(z0) ⊂ Ω and ∃{an}∞n=0 ⊂ C s.t.
f(z) =

∑∞
n=0 an(z− z0)n and this power series converges absolutely on Dr(z0) (i.e. f(z)

is analytic if locally it is equal to an absolutely convergent power series).

Remark 2.11 Since power series are holomorphic, then f(z) analytic on Ω =⇒ f(z)
holomorphic on Ω.

Theorem 2.12 Holomorphic functions are analytic.

Proof: To be done in a following lecture.

Remark 2.13 This is one way in which complex analysis veers away from real analysis.
This theorem is not true in real analysis; there is a big gap between differentiable and
analytic in R, but none in C.

2.3 Contour/Line Integrals

A contour integral is an integral of a function along a curve.

2.3.1 Parameterized Curves in C

Consider a function γ : [a, b] → C with [a, b] ⊂ R. We assume that γ(t) is at least
piece-wise smooth. We often write γ(t) = z(t) with t ∈ [a, b].

Definition 2.14 (Piece-Wise Smooth) A function γ[a, b] → C is called piece-wise
smooth if ∃a = a0 < a1 < · · · < aN = b such that γ(t) is continuous on [a, b], and that
γ(t) restricted to [aj , aj+1] is infinitely differentiable with γ′(t) ̸= 0 ∀t ∈ [aj , aj+1].
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γ(a)

γ(b)

An example of a piece-wise smooth function.

Example 2.15 (CCW Circle) Let z(t) = z0 + eit. This traces a circle in C.

2.3.2 Reparameterization of Curves

Definition 2.16 (Reparameterization) A reparameterization of a curve γ(t) is a
function γ̃(s) = γ(t(s)) where s ∈ [c, d] and the map s 7→ t(s) is a smooth and strictly
increasing bijection [c, d] → [a, b]. The map s 7→ t(s) is called the change of parameter
from the interval [c,d] to [a,b].

Note 2.17 The mapping must be strictly increasing to ensure that the initial point of
the first curve is the same as the initial point of the second curve, and the same with the
end points. The curve can however be inverted:

Example 2.18 Consider γ(b+ a− t) = γ̃(t). This reverses the direction of the curve.

γ(a)

γ(b) γ̃(a)

γ̃(b)

An example of a curve and its reversed equivalent.

Example 2.19 (CW circle) Consider the parameterization z(t) = z0 + eit of a circle.
The reparameterization z̃(t) = z0 + e−it is the same circle but traced CW.

2.3.3 Contour Integrals

Definition 2.20 (Contour Integral) Given a parameterized (parameterized by z(t))
curve γ(t) s.t. γ([a, b]) ⊂ Ω ⊂ C, and a continuous function f : Ω → C, we define the
contour integral of f(z) over γ as:∫

γ
f(z) dz :=

∫ b

a
f
(
z (t)

)
· z′ (t) dt ∈ C

if γ is smooth. If it is only piece-wise smooth, then:∫
γ
f(z) dz :=

N−1∑
j=0

∫ aj+1

aj

f
(
z (t)

)
· z′ (t) dt ∈ C.
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For now a contour integral is a ’black box’ which takes in a parameterized curve γ and
a complex function f(z) and outputs a complex number. It has some nice properties
that come along with it:

• The value of the integral is not dependant on the parameterization.∫
γ
f(z) dz =

∫ b

a
f(z(t)) · z′(t) dt

=

∫ d

c
f(z(t(s))) · z′(t(s)) · t′(s)︸ ︷︷ ︸

z̃′(s) by chain rule

ds

=

∫ d

c
f(z̃(s)) · z̃′(s) ds.

More properties will come in future lectures.
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Lecture 3: September 10

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

3.1 Complex Power Series Continued

Recall the concept of complex power series discussed in the previous lecture: a function

f(z) =
∑∞

n=0 anz
n with an ∈ C, z ∈ C. Recall that Rf = (lim sup

n→∞
|an|

1
n )−1, and that if

z < Rf , f(z) converges absolutely, and if z > Rf , f(z) diverges.

Example 3.1 (Logarithm)

log(1 + z)“=”z − z2

2
+
z3

3
− z4

4
+ · · ·

=
∞∑
n=1

(−1)n+1zn

n

R =
1

lim sup
n→∞

|an|
1
n

=
1

lim sup
n→∞

n
1
n

= 1.

Note that the complex logarithm is more complicated than the real logarithm; it won’t be
a single function, but a family of functions. This power series is only one of the family.
An example of the non-simplicity of the logarithm is as follows: given 0 ̸= z ∈ C, we
want w = log(z) s.t. ew = z. Given w we can easily find z. Given z, can we find w?

z = reiθ, r = |z| > 0, 0 ≤ θ ≤ 2π, θ = Arg(z)

w = x+ iy, x, y ∈ R

ex+iy = ex︸︷︷︸
∈R

eiy︸︷︷︸
∈C

= reiθ

=⇒ ex = r =⇒ x = log(r)

and eiy = eiθ =⇒ y = θ + 2πk, k ∈ Z

That is to say that given z ̸= 0, there are infinitely many w that solve ew = z:

log(z)“=”w = log(|z|) + i · (Arg(z) + 2πk), k ∈ Z

which differ by adding multiples of 2πi.

3-1



Lecture 3: September 10

3.2 Contour Integral Properties

We now continue some of the properties of contour integrals:

1. The value of the integral is not dependant on the parameterization (as long as
orientation is preserved).

2. If γ̃ is γ with reverse orientation then:

Let z(t), a ≤ t ≤ b be a parameterization of γ. Let z̃(t) = z(b+a− t), a ≤ t ≤ b be
a parameterization of γ̃. Assume γ is smooth (piece-wise smooth yields a similar
argument on the different smooth intervals).∫

γ̃
f(z) dz =

∫ b

a
f(z(b+ a− t)︸ ︷︷ ︸

z̃(t)

) · (−z′(b+ a− t)︸ ︷︷ ︸
z̃′(t)

) dt

(change variable t→ b+ a− t) = −
∫ b

a
f(z(t)) · z′(t) dt = −

∫
γ
f(z) dz

3. The integral operator is linear, ie ∀λ, µ ∈ C, f, g continuous on C:∫
γ
(λf(z) + µg(z)) dz = λ

∫
γ
f(z) dz + µ

∫
γ
g(z) dz

4. For any γ and f(z):

with L(γ) = arclength(γ) =

∫ b

a

∣∣z′(t)∣∣ dt∣∣∣∣∣
∫
γ
f(z) dz

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a
f(z(t))z′(t) dt

∣∣∣∣∣
≤
∫ b

a

∣∣f(z(t))∣∣ ·∣∣z′(t)∣∣dt
≤ sup

z∈γ[a,b]

∣∣f(z)∣∣ · ∫ b

a

∣∣z′(t)∣∣︸ ︷︷ ︸
L(γ)

dt

= sup
z∈γ[a,b]

∣∣f(z)∣∣ · L(γ). (3.1)

3.3 Complex Antiderivatives

We now consider the complex equivalent of antiderivatives.

Definition 3.2 (Antiderivatives) Let Ω ⊂ C open f : Ω→ C holomorphic. F : Ω→
C is an antiderivative of f(z) on Ω if F (z) is holomorphic and F ′(z) = f(z) ∀z ∈ Ω.
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Example 3.3 F (z) = zn+1

n+1 is an antiderivative of f(z) = zn on any Ω ⊂ C.

Example 3.4 f(z) = ez is an antiderivative of itself.

Theorem 3.5 (Fundamental Theorem of Calculus ) Suppose that F (z) is an an-
tiderivative of f(z) on some Ω ⊂ C. Let γ be a piece-wise smooth path in Ω. Then:∫

γ
f(z) dz = F (γ(b))− F (γ(a)).

Corollary 3.6 If γ is a closed curve (a curve γ with γ(a) = γ(b)) then:∫
γ
f(z) dz = 0.

Proof:[3.5] Assume that γ is smooth.∫
γ
f(z) dz =

∫ b

a
f(z(t))z′(t) dt

=

∫ b

a
F ′(z(t))z′(t)︸ ︷︷ ︸

d
dt
F (z(t))

dt

=

∫ b

a

(
d

dt
F (z(t))

)
dt

(apply real FTC) = F (z(b))− F (z(a))
= F (γ(b))− F (γ(a)).

If γ is only piece-wise smooth:∫
γ
f(z) dz =

N−1∑
j=0

∫ aj+1

aj

f(z(t))z′(t) dt

(apply above) =

N−1∑
j=0

(F (z(aj+1))− F (z(aj)))

= F (z(b))− F (z(a)).

Corollary 3.7 If f : Ω→ C is a holomorphic function on Ω open and connected, then
f ′(z) = 0∀z ∈ Ω =⇒ f(z) is constant.

Proof: Since Ω is open and connected it follows (by elementary topology) that Ω is
path-connected (ie given z0, z1 ∈ Ω ∃γ : [a, b]→ Ω st γ(a) = z0 and γ(b) = z1).
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Apply FTC to f’(z):

0 =

∫
γ
f ′(z)︸ ︷︷ ︸
=0

dz = f(b)− f(a)

=⇒ f(a) = f(b)

Remark 3.8 Connectedness is important here, as if we don’t have it we could have a
function f(z) defined on two sets, and constant locally on both, but not globally constant.

Next week we’ll continue with the proof for f(z) holomorphic =⇒ f(z) analytic.
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Lecture 4: September 15

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

4.1 Integrals over Closed Curves

4.1.1 Goursat’s Theorem

We start by presenting the following theorem:

Theorem 4.1 (Goursat’s Theorem) Open Ω ⊂ C, f : Ω → C holomorphic. Let
T ⊂ Ω be a (solid) triangle (the boundary is piecewise smooth). Then:∫

∂T
f(z) dz = 0.

Proof: Consider a triangle T in an open set Ω.

Ω

T

Subdivide T as follows: pick the midpoints of the sides, and form 4 smaller triangles
by joining these points, then label these triangles T 1, T 2, T 3, T 4 such that T = T 1∪T 2∪
T 3 ∪ T 4:
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T 2

T 4

T 1 T 3

We use the positive orientation (CCW) for boundaries of triangles.

T 2

T 4

T 1 T 3

Let I =
∫
∂T f(z) dz. Observe that (since integrating over a curve backwards cancels

with integrating over a curve forwards):

I =

∫
∂T
f(z) dz

=
4∑

n=1

∫
∂Tn

f(z) dz.

Let T i
1 = T i, i = 1, 2, 3, 4:

T 2
1

T 4
1

T 1
1 T 3

1
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I =

4∑
n=1

∫
∂Tn

i

f(z) dz.

|I| =

∣∣∣∣∣∣
4∑

n=1

∫
∂Tn

i

f(z) dz

∣∣∣∣∣∣
≤

4∑
n=1

∣∣∣∣∣
∫
∂Tn

i

f(z) dz

∣∣∣∣∣︸ ︷︷ ︸
one of these is ≥|I|

4

.

WLOG we say that this is the first triangle:∣∣∣∣∣
∫
∂T 1

1

f(z) dz

∣∣∣∣∣ ≥ |I|4 .
We then subdivide T 1

1 into 4 more triangles T 1
2 , T

2
2 , T

3
2 , T

4
2 :

T 2
1

T 4
1

T 3
1

T 2
2

T 4
2

T 1
2 T 3

2

T 1
1

We then repeat the argument just performed on the sub-triangles as well. This yields:∣∣∣∣∣
∫
∂T 1

2

f(z) dz

∣∣∣∣∣ ≥ 1

4

∣∣∣∣∣
∫
∂T 1

1

f(z) dz

∣∣∣∣∣ ≥ |I|42 .
Repeating this we get: ∣∣∣∣∣

∫
∂T 1

k

f(z) dz

∣∣∣∣∣ ≥ |I|4n . (4.1)

for the nested triangles T ⊃ T 1
1 ⊃ T 1

2 ⊃ · · · ⊃ T 1
k ⊃ · · · . We also know that:

with diam(K) = sup{|z − w| : z, w ∈ K}

then diam(T 1
k ) =

diam(T )

2k
as k→∞−−−−−→ 0
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Since we have a nested sequence of compact sets whose diameter shrinks to zero (means
that there cannot be two points in the intersection), we have:

∞⋂
k=1

T 1
k = { z∞ } ∈ T.

We now work near z∞ and try to Taylor expand. Since f(z) is holomorphic:

lim
z→z∞

f(z)− f(z∞
z − z∞

=
exists

f ′(z∞)

=⇒ f(z)− f(z∞
z − z∞

= f ′(z∞) + ψ(z − z∞) (where ψ(z − z∞)
z→z∞−−−−→ 0)

=⇒ f(z) = f(z∞) + f ′(z∞)(z − z∞) + ψ(z − z∞)(z − z∞).

We can try to estimate now (for k large such that ∀z ∈ ∂T 1
k , |z − z∞| ≤

c
2k
):∫

∂T 1
k

f(z) dz =

∫
∂T 1

k

f(z∞) dz +

∫
∂T 1

k

f ′(z∞)(z − z∞) dz +

∫
∂T 1

k

ψ(z − z∞)(z − z∞) dz.

Now f(z∞) is a constant holomorphic function, which thus has an antiderivative.
Hence since ∂T 1

k is a closed curve then by FTC:∫
∂T 1

k

f(z∞) dz = 0.

Similarly: ∫
∂T 1

k

f ′(z∞)(z − z∞) dz = 0.

Thus, taking the modulus of both of our remaining terms, and by recalling eq. (4.1):

|I|
4k
≤

∣∣∣∣∣
∫
∂T 1

k

f(z) dz

∣∣∣∣∣ =
∣∣∣∣∣
∫
∂T 1

k

ψ(z − z∞)(z − z∞) dz

∣∣∣∣∣
(apply eq. (3.1)) ≤ L(∂T 1

k )︸ ︷︷ ︸
=

L(∂T )

2k

sup
z∈∂T 1

k

∣∣ψ(z − z∞)
∣∣

︸ ︷︷ ︸
≤ϵk

sup
z∈∂T 1

k

|z − z∞|︸ ︷︷ ︸
≤diam(T 1

k )=
diam(T )

2k

≤ L(∂T )

2k
· ϵk ·

diam(T )

2k

=
ϵk · L(∂T ) · diam(T )

4k

⇓

|I| ≤ ϵk · L(∂T ) · diam(T )
k→∞−−−→ 0

⇓
|I| = 0.

And we’re done.
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4.1.3 Local Existence of Antiderivatives

Corollary 4.2 (Local Existence of Antiderivatives) Consider open Ω ⊂ C, f a
holomorphic function. Then ∀ disks D ⊂ Ω ∃F : D → Ω holomorphic C1 s.t. F ′(z) =
f(z) ∀z ∈ D. That is to say that F is a C1 antiderivative of f on D.

Note 4.3 F a C1 function =⇒ F holomorphic and F ′ continuous. This must be true,
since if F ′ is not continuous, f is not continuous and thus not holomorphic.

Proof: The proof uses Goursat’s Theorem in a clever way. Let Dz0 ⊂ Ω be a disk
centered at z0. Let L

z
z0 ⊂ D be the line segment from z0 to z.

z0

zLz
z0

For all z ∈ D let:

F (z) =

∫
Lz
z0

f(w) dw.

This defines a well-defined function F (z) with F (z0) = 0. We now will show that F
is holomorphic, C1, and an antiderivative of f .

Given z ∈ D and h small s.t. z + h ∈ D, compute:

F (z + h)− F (z)
h

=
1

h

∫
Lz+h
z0

f(w) dw −
∫
Lz
z0

f(w) dw

 .

Consider the resulting triangle T inscribed in Dz0 :
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z0

z

Lz
z0

z + h
Lz+h
z0

Lz+h
z

T

Then note that, by theorem (4.1) we have that (integrating in the positive direction):

0 =
Gt.

∫
∂T
f(w) dw =

∫
Lz+h
z0

f(w) dw +

∫
Lz
z+h

f(w) dw +

∫
L
z0
z

f(w) dw

=

∫
Lz+h
z0

f(w) dw −
∫
Lz+h
z

f(w) dw −
∫
Lz
z0

f(w) dw

⇓

1

h

(∫
Lz+h
z

f(w) dw

)
=

1

h

∫
Lz+h
z0

f(w) dw −
∫
Lz
z0

f(w) dw


=
F (z + h)− F (z)

h
.

We then parameterize Lz+h
z by z(t) = z + th, t ∈ [0, 1] with z′(t) = h:

F (z + h)− F (z)
h

=
1

h

(∫ 1

0
f(z(t)) · z′(t) dt

)

=
1

h

(∫ 1

0
f(z + th) · h dt

)

=

∫ 1

0
f(z + th) dt

(f ∈ C0; let h→ 0) = f(z).

This proves that F is holomorphic, that F ′ = f (on D), and that F is C1 (since f is
continuous).
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Recall that by theorem (3.5) (FTC), if f is holomorphic and admits an antiderivative
on an open set Ω, then for any closed curve γ then

∫
γ f(z) dz = 0.

Corollary 4.4 Ω ⊂ C open, f : Ω → C holomorphic. Then ∀D ⊂ C disc, ∀γ : [a, b] →
D piecewise closed curve: ∫

γ
f(z) dz = 0.

Proof: Combine corollary (4.2) and theorem (3.5). Then by (4.2) we find F an
antiderivative for f on D. Then by (3.5):∫

γ
f(z) dz = 0.

Remark 4.5 Not every holomorphic function f : Ω→ C has an antiderivative on Ω.

Counterexample 4.6 Ω = C∗ = C \ {0}, f(z) = 1
z . This function is holomorphic on

Ω.
If there were a function F : Ω→ C holomorphic with F ′(z) = 1

z (an antiderivative on
C∗) then with γ being the CCW unit circle:∫

γ
f(z) dz = 0.

But by hand (example not done in the notes) you can calculate that in fact:∫
γ
f(z) dz = 2πi.

The mistake is assuming we have an antiderivative on C∗. However by the previous
theorem, if we restrict ourselves to any disc D ⊂ C∗ then 1

z does have an antiderivative.

Remark 4.7 (Uniqueness of the antiderivative) If f : Ω → C holomorphic, and
F,G are antiderivatives of f , then F = G + c for some c ∈ C. Thus the antiderivative
is unique up to a constant.

Proof: Indeed (F −G)′ = (f − f) = 0. Thus F −G is holomorphic on Ω and F −G
is constant.

Remark 4.8 (Antiderivative of 1
z on D) Parallel to the real case, an antiderivative

of 1
z is log(z).

This will be proved later when we have more powerful tools to work with.
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4.2 Multivariate Calculus Review

We present a quick recap of multivariable calculus in R2 = C.
Consider Ω ⊂ R2 = C open. Consider a continuous vector field F⃗ on Ω, ie a vector

valued function F⃗ : Ω→ R2. F⃗ (x, y) = (P (x, y), Q(x, y)) with P,Q ∈ C1(Ω,R) (ie P,Q
are C1 functions from Ω to R).

If γ is a parameterized piecewise smooth curve in Ω then you can define various line
integrals: ∫

γ
P dx,

∫
γ
P dy,

∫
γ
Qdx,

∫
γ
Qdy.

For example if γ(t) = (x(t), y(t)), t ∈ [a, b], then:∫
γ
P dx =

∫ b

a
P (x(t), y(t)) · x′(t) dt,∫

γ
P dy =

∫ b

a
P (x(t), y(t)) · y′(t) dt.

Theorem 4.9 (Green’s Theorem) Suppose Ω ⊂ R2 is open and connected, with ∂Ω
given by a piecewise smooth paramterized curve with positive (CCW) orientation. Then
given F⃗ (x, y) = (P (x, y), Q(x, y)) a C1 vector field as above on Ω, then:∫

∂Ω
(P dx+Qdy) =

∫
Ω

(
∂Q

∂x
− ∂P

∂y

)
dA︸︷︷︸
dxdy

.

Note 4.10 Note that these two notations are the same:∫
∂Ω

(P dx+Qdy) =

∮
∂Ω
F⃗ · dr⃗

and

(
∂Q

∂x
− ∂P

∂y

)
= ▽× F⃗ = curl(F⃗ ).
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Instructor: Valentino Tosatti Scribe: Alexander Kroitor

5.1 Cauchy’s Theorem

We begin with a short discussion on what positive orientation means:

5.1.1 Orientation

Consider a blob Ω with 2 holes in it:

Ω

If you are at a point on the curve, the positive direction is the direction such that the
domain is on your left.

5.1.2 Cauchy’s Theorem

Proposition 5.1 (Complex Green’s Theorem) Ω ⊂ C bounded open, f : Ω →
C, C1 f = u + iv, u, v : Ω → R. Assume that ∂Ω can be parameterized by piecewise
smooth curves.
Then (with the parameterization in the positive direction):∫

∂Ω
f(z) dz = 2i

∫
Ω

∂f

∂z
dA.

This can be interpreted as a complex version of Green’s Theorem.
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Proof: Ω =
⋃n

j=1Cj , each smooth:∫
∂Ω
f(z) dz =

n∑
j=1

∫
Cj

f(z) dz.

Parameterize each Cj separately by z(t), t ∈ [a, b]. Then:∫
Cj

f(z) dz =

∫
Cj

f(z(t)) · z′(t) dz.

Write z(t) = (x(t), y(t)) = x(t) + iy(t), z′(t) = x′(t) + iy′(t).∫
Cj

f(z) dz =

∫
Cj

f(z(t)) · z′(t) dz

=

∫ b

a
(u(x(t), y(t)) + iv(x(t), y(t))) · (x′(t) + iy′(t)) dt

=

∫ b

a
u(x(t), y(t)) · x′(t) dt−

∫ b

a
v(x(t), y(t)) · y′(t) dt

+i

[∫ b

a
u(x(t), y(t)) · y′(t) dt+

∫ b

a
v(x(t), y(t)) · x′(t) dt

]

=

∫
CJ

udx−
∫
CJ

v dy + i

[∫
CJ

udy +

∫
CJ

v dx

]
.

=⇒
∫
∂Ω
f(z) dz =

∫
∂Ω

(udx− v dy) + i

∫
∂Ω

(udy + v dx).

Then both
∫
∂Ω(u dx − v dy) and

∫
∂Ω(u dy + v dx) are line integrals of real-valued

functions. We can then apply Green’s Theorem to them:

(let F⃗ = (u,−v))
∫
∂Ω

(udx− v dy) =
∫
Ω

(
−∂v
∂x
− ∂u

∂y

)
dA.

(let F⃗ = (v, u))

∫
∂Ω

(udy + v dx) =

∫
Ω

(
∂u

∂x
− ∂v

∂y

)
dA.

⇓∫
∂Ω
f(z) dz = i

∫
Ω

(
∂u

∂x
+ i

∂v

∂x︸ ︷︷ ︸
df
dz

+i

(
∂u

∂y
+ i

∂v

∂y︸ ︷︷ ︸
∂f
∂y

))
dA

= i

∫
Ω

(
∂f

∂x
+ i

∂f

∂y

)
dA

(apply (1.6)) = 2i

∫
Ω

∂f

∂z
dA.
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We now get to the key result of this chapter:

Theorem 5.2 (Cauchy’s Theorem) Ω ⊂ C open, connected, f : Ω → C. Then the
following are equivalent:

1. f is holomorphic (in Ω).

2. f ∈ C1(Ω) and ∂f
∂z = 0 on Ω (CR equation).

3. f ∈ C1(Ω) and ∀Ω′ ⊂⊂ Ω ( Ω′ ⊂ Ω and compact) then∫
∂Ω′

f(z) dz = 0.

4. f ∈ C1(Ω) and ∀D = Dr(z0) ⊂⊂ Ω and ∀z ∈ D we have

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw, (5.1)

known as Cauchy’s Integral Formula.

5. ∀D = Dr(z0) ⊂⊂ Ω and ∀z ∈ D we have

f(z) =

∞∑
n=0

an(z − z0)n,

and this power series is absolutely convergent on D (ie f is analytic on Ω) and

an =
f (n)(z0)

n!
=

1

2πi

∫
∂D

f(w)

(w − z)n+1
dw ∀n ≥ 0.

Note 5.3 Note that (1 ↔ 2) gained us some depth compared to before. As discussed f
holomorphic implies that f is C0, but now we know it is C1 (in fact (5) implies that f
is C∞).

Note that (3) is a much stronger version of theorem (4.1). Theorem (4.1) is for
triangles only, but this applies to many more cases (theorem (4.1) is the same statement
with Ω′ = T triangle). We also proved this for disks.

Statement (4) is very important; it tells us that if you want to know the value of f(z),
we can find the value by computing an integral on a disk containing z.

Statement (5) contains a generalization of equation (5.1) in the formula for an. State-
ment (4) can be recovered by letting n = 0.

Proof: We will prove (1)⇒ (2)⇔ (3)⇒ (4)⇒ (5)⇒ (1).

(2)⇒ (3) : This is an immediate result of theorem (5.1).
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(3)⇒ (2) : Suppose not, ie ∃z0 s.t. ∂f
∂z (z0) ̸= 0. Consider D = Dr(z0) ⊂⊂ Ω. Apply (3) to

give:

0 =

∣∣∣∣∫
∂D

f(z) dz

∣∣∣∣ Green
=

∣∣∣∣2i ∫
D

∂f

∂z
(z) dA

∣∣∣∣
=2

∣∣∣∣∣
∫
D

(
∂f

∂z
(z)− ∂f

∂z
(z0)

)
dA+

∂f

∂z
(z0)

∫
D
dA

∣∣∣∣∣
(reverse triangle ineq) ≥2

∣∣∣∣∣∣∣∣∣
∂f

∂z
(z0)

∫
D
dA︸ ︷︷ ︸

πr2

∣∣∣∣∣∣∣∣∣− 2

∣∣∣∣∣
∫
D

(
∂f

∂z
(z)− ∂f

∂z
(z0)

)
dA

∣∣∣∣∣
=2πr2

∣∣∣∣∂f∂z (z0)
∣∣∣∣︸ ︷︷ ︸

>0 assumed

−2

∣∣∣∣∣
∫
D

(
∂f

∂z
(z)− ∂f

∂z
(z0)

)
dA

∣∣∣∣∣ .
Now f ∈ C1 =⇒ ∂f

∂z ∈ C
0 =⇒ ∃δ > 0 s.t. if |z − z0| < δ then

∣∣∣∂f∂z (z)− ∂f
∂z (z0)

∣∣∣ <
1
2

∣∣∣∂f∂z (z0)∣∣∣. Thus:
2

∣∣∣∣∣
∫
D

(
∂f

∂z
(z)− ∂f

∂z
(z0)

)
dA

∣∣∣∣∣ ≤ 2

∫
D

∣∣∣∣∂f∂z (z)− ∂f

∂z
(z0)

∣∣∣∣dA
< πr2

∣∣∣∣∂f∂z (z0)
∣∣∣∣

⇓

0 ≥
(
2πr2 − πr2

)∣∣∣∣∂f∂z (z0)
∣∣∣∣ > 0,

which is absurd.

(3)⇒ (4) : Assume (3). Then (2) holds. Hence df
dz = 0 in Ω. Fix z ∈ Ω. Let g(w) = f(w)−f(z)

w−z

for w ∈ Ω \ {z}. Then g ∈ C1(Ω \ {z}) and dg
dw (w) = 0. Thus g satisfies (2) and

thus (3) on Ω \ {z}. Apply (3) on Ω′ = {ϵ < |w − z| < δ | 0 < ϵ < δ}, with δ small
enough that Ω′ ⊂⊂ Ω. Then Ω′ is an annulus centered at z:
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z
δ

ϵ

Ω
Ω′

Applying (3) we get by (and taking the integral going clockwise on both curves):

0 =

∫
∂Ω′

g(w) dw =

∫
∂Cδ

g(w) dw −
∫
∂Cϵ

g(w) dw.

⇓∫
∂Cϵ

g(w) dw =

∫
∂Cδ

g(w) dw.

We need a “Taylor expansion” for f ∈ C1.

Lemma 5.4 For f ∈ C1, w sufficiently close to z, we have that:

f(w) = f(z) +
∂f

∂z
(z)(w − z) + ∂f

∂z
(z)(w − z) + o(|z − w|).

This is the Taylor expansion of a C1 function of a complex variable. Note that

o(f) is a function such that
∣∣∣o(f)|f |

∣∣∣→ 0.

Proof: Use the real Taylor Expansion as follows:

z = x+ iy

w = a+ ib

(Taylor) f(w) = f(z) +
∂f

∂x
(z)(a− x) + ∂f

∂y
(z)(b− y) + o(|z − w|).
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Then:

∂f

∂z
(z)(w − z) + ∂f

∂z
(z)(w − z) = 1

2

(
∂f

∂x
− i∂f

∂y

)
(a+ ib− x− iy)

+
1

2

(
∂f

∂x
+ i

∂f

∂y

)
(a− ib− x+ iy)

=
∂f

∂x
(z)(a− x) + ∂f

∂y
(z)(b− y)

Then we apply this lemma to f . f is holomorphic so we get (after some rearrang-
ing):

f(w)− f(z)
w − z

= g(w) =
∂f

∂z
(z) +

o(|z − w|)
w − z

(let w be close to z) =
∂f

∂z
(z).

Now g can be extended to a continuous function on all Ω (before it was defined for
w ̸= z) by letting g(z) = ∂f

∂z (z). Thus:∣∣∣∣∣
∫
∂Cϵ

g(w) dw

∣∣∣∣∣ ≤ L(Cϵ) · sup
w∈Cϵ

∣∣g(w)∣∣
= 2πϵ · sup

w∈Cϵ

∣∣g(w)∣∣︸ ︷︷ ︸
bd. by (5.4)

.

(letting ϵ→ 0) ⇓

0 =

∫
∂Cϵ

g(w) dw =

∫
∂Cδ

g(w) dw.

Then: ∫
∂Cδ

g(w) dw =

∫
∂Cδ

f(w)

w − z
dw − f(z)

∫
∂Cδ

dw

w − z︸ ︷︷ ︸
compute

.

Letting w = z + δeit, t ∈ [0, 2π]:∫
∂Cδ

dw

w − z
=

∫ 2π

0

iδeit

δeit
dt

= i

∫ 2π

0
dt = 2πi.

Thus:

f(z) =
1

2πi

∫
∂Cδ

f(w)

w − z
dw.
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This proves (4) when z = z0. To finish the proof we assume z0 ̸= z.

Let D = Dδ(z0) and Dϵ(z) with ϵ small such that Dϵ(z) ⊂ Dδ(z0). Let Ω′ =
Dδ(z0) \Dϵ(z) ⊂⊂ Ω.

z

z0
δ

ϵ

Ω
Ω′

Consider the function in w ∈ Ω′, given byf(w)
w−z . This is holomorphic and C1 in Ω′

(since z /∈ Ω′). Applying (3) gives us:

0 =

∫
∂Ω′

f(w)

w − z
dw =

∫
∂Dδ(z0)

f(w)

w − z
dw −

∫
∂Dϵ(z)

f(w)

w − z
dw︸ ︷︷ ︸

=2πif(z) by above

=

∫
∂Dδ(z0)

f(w)

w − z
dw − 2πif(z)

⇓

f(z) =
1

2πi

∫
∂Cδ

f(w)

w − z
dw,

Which proves it in all cases.

(4)⇒ (5) : Fix a disc D = Dr(z0) ⊂⊂ Ω. Let z ∈ D. By (4) then:

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw.

We expand 1
w−z in a power series centered at z0 (so we look for a power series in
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(z − z0)). First note that:

(since w ∈ ∂D) |w − z0| = r

(since z ∈ D \ ∂D) |z − z0| < r

=⇒
∣∣∣∣ z − z0w − z0

∣∣∣∣ < 1.

Thus:

1

w − z
=

1

w − z0 − (z − z0)
=

1

w − z0
· 1

1−
(
z − z0
w − z0

)
︸ ︷︷ ︸

<1

=
1

w − z0

∞∑
n=0

(
z − z0
w − z0

)n

︸ ︷︷ ︸
absolutely convergent

.

Applying this to equation (5.1) gives us:

f(z) =
1

2πi

∫
∂D

 ∞∑
n=0

(
z − z0
w − z0

)n f(w)

w − z0

dw

(sum ab. conv.) =
∞∑
n=0

[
1

2πi

∫
∂D

f(w)

(w − z0)n+1
dw

]
︸ ︷︷ ︸

an

(z − z0)n.

Thus f is analytic and is given by the formula claimed in (5). Finally an = f (n)(z0)
n! .

Indeed if f(z) =
∑∞

n=0 an(z− z0)n absolutely convergent on some disc D ∋ z, then
we proved that f(z) is holomorphic and you can differentiate this power series term
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by term. This gives:

f(z) =
∞∑
n=0

an(z − z0)n

=⇒ f(z0) = a0

f ′(z) =
∞∑
n=1

n · an(z − z0)n−1

=⇒ f ′(z0) = a1

f ′′(z) =

∞∑
n=2

n(n− 1) · an(z − z0)n−2

=⇒ f ′′(z0) = 2 · a2
...

f (k)(z) =
∞∑
n=k

n(n− 1) . . . (n− k + 1) · an(z − z0)n−k

=⇒ f (k)(z0) = k! · ak.

This result holds for all convergent power series, thus it holds for this one in
particular.

(1)⇒ (2) : Assume f holomorphic on Ω. f satisfies the CR equations by (1.4). We must now
prove that f ∈ C1. We use corollary (4.2).

∀z ∈ Ω ∃D = Dr(z) ⊂⊂ Ω, by corollary (4.2), ∃F : Ω → C holomorphic and
F ′ = f . F is holomorphic and C1 (both it and its derivative are continuous) since
∂F
∂z = 0 and ∂F

∂z = f(z) which is C0 (since holomorphic functions are continuous).
Thus F satisfies (2) on D, and thus F satisfies (5) and is analytic on D. Thus so
is f = F ′ (since the derivative of a convergent power series is also a convergent
power series). Power series are C1 and so we’re done.

(5)⇒ (1) : This was discussed when complex power series were discussed, and is a direct
application of theorem (2.3).

And so we are done the proof.

Note 5.5 In statements (2), (3), and (4), f ∈ C1(Ω) means that f ∈ C1(Ω) in the real
sense. That is to say that for u, v such that f = u+ iv then u, v ∈ C1(Ω).
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Lecture 6: September 22

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

6.1 Cauchy’s Theorem Continued

This lecture the proof of Cauchy’s Theorem was continued. The rest of the proof was
put with the first part of the proof in lecture 5.
We start this lecture with a corollary of Cauchy’s Theorem, preceded by a rewording

of a previous theorem.

Corollary 6.1 (Local Existence of Antiderivatives version 2) Ω ⊂ C open, f :

Ω → C continuous such that
∫
∂T f(z) dz = 0, ∀ T ⊂ Ω triangle. Then ∀ disks D ⊂ Ω

∃F : D → C holomorphic C1 s.t. F ′(z) = f(z)∀z ∈ D. Thus an antiderivative of f
exists.

Proof: The proof for corollary (4.2) works just as well using these assumptions.

Corollary 6.2 (Morera’s Theorem) Ω ⊂ C open connected, f : Ω → C continuous
such that

∫
∂T f(z) dz = 0, ∀ T triangle. Then f is holomorphic.

Note 6.3 This is the converse of theorem (4.1) (Goursat’s Theorem). The proof is
similar to to the proof of corollary (6.1) with some slight modifications.

Proof: Now Morera follows. Since corollary (6.1) applies to f , we get that it has
antiderivatives, so ∃F s.t. F ′(z) = f(z). We know that F is analytic, thus so is f . It
follows that f is holomorphic.

We now use Cauchy’s Theorem to compute some real variable integrals. Comput-
ing real integrals is one of the original motivations for exploring complex analysis and
complex integrals.

Example 6.4 (Fourier Transform of Gaussian) The goal here is to compute the
Fourier transform in R of the Gaussian e−πx2

. That is to say given ξ ∈ R we want
to compute: ∫ ∞

−∞
e−πx2

e−2πixξ dx.
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First let us dispense with the case where ξ = 0, that is to say compute:∫ ∞

−∞
e−πx2

dx.

Observe that if you square it, it becomes a double integral:(∫ ∞

−∞
e−πx2

dx

)2

=

∫
R2

e−π(x2+y2) dA.

Changing it to polar coordinates, with dA = r dθ dr and x2 + y2 = r2:∫
R2

e−π(x2+y2) dA =

∫ ∞

0

∫ 2π

0
e−πr2r dθ dr

= 2π

∫ ∞

0
e−πr2r dr

= −e−πr2
∣∣∣∞
0

= 1.

Now let ξ > 0. Consider f(z) = e−πz2, holomorphic on C. We use Cauchy’s Theorem
for f on a well chosen contour:

−R R

R+ iξ−R+ iξ

γ1

γ2

γ3

γ4 ΩR

γR is a piecewise smooth closed curve, and ΩR is the rectangle inside γR. f(z) is
holomorphic on C, so in particular f(z) is holomorphic on ΩR. By Cauchy’s Theorem
then:

0 =

∫
γR

f(z) dz.

Thus: 0 =

∫
γ1

e−πz2 dz +

∫
γ2

e−πz2 dz +

∫
γ3

e−πz2 dz +

∫
γ4

e−πz2 dz.

Using z(t) = t, z′(t) = 1, t ∈ [−R,R]:∫
γ1

e−πz2 dz =

∫ R

−R
e−πt2 dt

R→∞−−−−→ 1.
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Using z(t) = R+ it, z′(t) = i, t ∈ [0, ξ]:∫
γ2

e−πz2 dz =

∫ ξ

0
e−π(R+it)2i dt

=

∫ ξ

0
e−π(R2−t2+2itR)i dt

= i

∫ ξ

0
e−π(R2−t2)e−2πitR dt.

Then: ∣∣∣∣∣
∫
γ2

e−πz2 dz

∣∣∣∣∣ =
∣∣∣∣∣
∫ ξ

0
e−π(R2−t2)e−2πitR dt

∣∣∣∣∣
≤
∫ ξ

0

∣∣∣e−π(R2−t2)
∣∣∣︸ ︷︷ ︸

ex>0∀x∈R

·
∣∣∣e−2πitR

∣∣∣︸ ︷︷ ︸
=1

dt

=

∫ ξ

0
e−π(R2−t2) dt

=

∫ ξ

0
e−πR2

eπt
2
dt

≤ e−πR2

∫ ξ

0
eπξ

2
dt

= e−πR2
eπξ

2
ξ

R→∞−−−−→ .

Similarly: ∫
γ4

e−πz2 dz
R→∞−−−−→ 0.

Finally using z(t) = iξ + t, z′(t) = 1, t ∈ [−R,R] (this is a reverse parameterization):∫
γ3

e−πz2 dz = −
∫ R

−R
e−π(t+iξ)2 dt

= −
∫ R

−R
e−π(t+iξ)2 dt

= −
∫ R

−R
e−π(t2−ξ2)e−2πitξ dt

= −eπξ2
∫ R

−R
e−πt2e−2πitξ dt.

Letting R → ∞, we get exactly what we wanted to evaluate in the beginning of the
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example. By the fact that the four integrals summed give zero we get that for ξ > 0:

−eπξ2
∫ ∞

−∞
e−πt2e−2πitξ dt = −1.

⇓∫ ∞

−∞
e−πt2e−2πitξ dt = e−πξ2 .

Similarly for ξ < 0 (apply a similar rectangle below the axis instead of above it):∫ ∞

−∞
e−πt2e−2πitξ dt = e−πξ2 .

This implies that the Fourier transform of the Gaussian is itself.

Example 6.5 In this example we want to compute:∫ ∞

0

1− cos(x)
x2

dx.

We use f(z) = 1−eiz

z2
, which is holomorphic on C \ {0}. Then with x ∈ R:

ℜ(f(x)) = ℜ

(
1− eix

x2

)
=

1− cos(x)
x2

.

Now apply Cauchy to the following contour γR,ϵ:

−R R−ϵ +ϵγ1 γ3

γ2

γ4

ΩR,ϵ

f is holomorphic on ΩR,ϵ ∀R > ϵ > 0. Thus Cauchy’s Theorem applies and gives:

0 =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz +

∫
γ3

f(z) dz +

∫
γ4

f(z) dz.

The γ1 and γ3 terms are useful to us since taking the real part and ϵ → 0, R → ∞
gives us the integral we’re looking for over the real line (useful to us since this function
is symmetric).
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Now consider the γ4 term,
∫
γ4
f(z) dz.

Consider z = x+ iy, y > 0. Then
∣∣eiz∣∣ = ∣∣eix∣∣∣∣e−y

∣∣ = ∣∣e−y
∣∣ ≤ 1 (does not apply if z is

in the lower half-plane). Then:

∣∣f(z)∣∣ = ∣∣1− eiz∣∣
|z|2

≤
1 +
∣∣eiz∣∣
|z|2

≤ 2

|z|2
.

Now since γ4 is contained in the upper half-plane:∣∣∣∣∣
∫
γ4

f(z) dz

∣∣∣∣∣ ≤ L(γ4) supz∈γ4

∣∣f(z)∣∣
≤ πR · 2

R2

R→∞−−−−→ 0.

Now consider the γ2 term,
∫
γ2
f(z) dz. Paramaterize γ2 (backwards) by z(t) = ϵeit, t ∈

[0, π]. Now:

eiz = 1 + iz +
(iz)2

2
+

(iz)3

3!
+ . . .

1− eiz = −iz − (iz)2

2
− (iz)3

3!
− . . .

⇓
1− eiz

z2
= − i

z
− (iz)2

2z2
− (iz)3

3!z2
− . . .

= − i
z
+ g(z),

with
∣∣g(z)∣∣ ≤ C for some C as z → 0.

Note that, since supz∈γ2(g(z)) is bounded:∣∣∣∣∫ π

0
g(z) · iϵeit dt

∣∣∣∣ ≤ sup
z∈γ2

(g(z)) · ϵπ ϵ→0−−→ 0.

And thus: ∫
γ2

1− eiz

z2︸ ︷︷ ︸
f(z)

dz = −
∫ π

0
f(ϵeit) · iϵeit dt

= +

∫ π

0

i

ϵeit
iϵeit dt−

∫ π

0
g(z) · iϵeit dt

(letting ϵ→ 0) = −π.
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Thus finally, noting that
∫
γ1
f(z) dz +

∫
γ3
f(z) dz =

∫
R

1−eix

x2 dx:

0 =

4∑
i=1

∫
γi

f(z) dz

(ϵ→ 0, R→∞) =

∫
R

1− eix

x2
dx− π.

⇓

ℑ

(∫
R

1− eix

x2
dx

)
= 0.

ℜ

(∫
R

1− eix

x2
dx

)
= π =

∫ ∞

−∞

1− cos(x)
x2

dx.

⇓ even function∫ ∞

0

1− cos(x)
x2

dx =
π

2
.

And we are done.
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Lecture 7: September 24

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

We start with a method for bounding the derivatives of a holomorphic function.

7.1 Cauchy’s Estimates

Theorem 7.1 (Cauchy’s Estimates) f : Ω → C holomorphic function on Ω ⊂ C.
Let z0 ∈ Ω, r > 0 s.t. D = Dr(z0) ⊂⊂ Ω. Then ∀n ≥ 0:∣∣∣f (n)∣∣∣ (z0) ≤ n!

rn
· sup
∂D
|f |

Note 7.2 This is linked closely to the coefficients of the power series representation of
f . If r is small (usually this is the case) then it gives you an upper bound for the growth
of the derivatives, and thus for the coefficients. If r is large then then these coefficients
will decay.

Proof: This is a straightforward application of equation (5.1). Parameterize D by
z(t) = z0 + reit: ∣∣∣f (n)∣∣∣ = ∣∣∣∣ n!2πi

∫
∂D

f(z)

(z − z0)n+1
dz

∣∣∣∣
≤ n!

2π

∣∣∣∣∣
∫ 2π

0

f(z0 + reit)

(z0 + reit − z0)n+1
· ireit dt

∣∣∣∣∣
≤ n!

2π

∣∣∣∣∣
∫ 2π

0

f(z0 + reit)

rn+1ei(n+1)t
· reit dt

∣∣∣∣∣
≤ n!

2π

∣∣∣∣∣
∫ 2π

0

f(z0 + reit)

rneint
dt

∣∣∣∣∣
≤ n!

2π

∫ 2π

0

∣∣f(z0 + reit)
∣∣

rn
dt

≤ n!

2π
sup
∂D
|f |
∫ 2π

0

1

rn
dt =

n!

rn
sup
∂D
|f | .

Note 7.3 This theorem is the same as putting a bound on an, with |an| ≤ sup∂D|f |
rn .
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Definition 7.4 (Entire Functions) A function f : C → C, f holomorphic on C, is
called an entire holomorphic function.

Corollary 7.5 (Liouville) Consider f : C→ C entire holomorphic with supz∈C
∣∣f(z)∣∣ ≤

C for some C. Then f is constant.
More generally, f : C → C entire holomorphic with

∣∣f(z)∣∣ ≤ C|z|k for some C, k and
for all z ∈ C. Then f is a polynomial in z with degree d ≤ k.

Note 7.6 This corollary says that if f entire holomorphic grows slower than a polyno-
mial, it is a polynomial. This implies that if f entire holomorphic is not a polynomial, it
must grow faster than any polynomial. Some examples are ez, cos(z), and sin(z) (unlike
the real case where cos(z) and sin(z) are bounded).

Proof: Since f entire holomorphic, we know that it can be written as a power series
that converges everywhere:

f(z) =
∞∑
n=1

anz
n (this converges for all z ∈ C).

We have an estimate for the growth of this an; applying theorem (7.1) on Dr(0) for
any r > 0 gives:

|an| =

∣∣∣f (n)(0)∣∣∣
n!

≤
sup∂Dr(0)|f |

rn

≤ Crk

rn
.

If n > k this implies that |an|
r→∞−−−→ 0. Thus: f(z) =

∑k
n=1 anz

n and f is a polynomial
of degree at most k.

Corollary 7.7 (Fundamental Theorem of Algebra) Given any polynomial P (z) =∑d
n=1 anz

n of degree d > 0, an ∈ C, ad ̸= 0. Then ∃z0 ∈ C s.t. P (z0) = 0 (it has a
root).

Note 7.8 This is equivalent to saying that C is an algebraically closed field. This is
false for R.

Proof: Suppose that P has no roots. Then the reciprocal is defined. 1
P (z) is an entire

holomorphic function. We want to bound
∣∣∣ 1
P (z)

∣∣∣ = 1

|P (z)| . Then P (z) = zd(ad +
ad−1

z +
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· · ·+ a0
zd
). For |z| ≫ 1, we can examine P (z)

zd
= (ad +

ad−1

z + · · ·+ a0
zd
)

|z|→∞−−−−→ ad. That is
to say that ∃R > 0 s.t. ∀|z| > R we have:∣∣∣∣P (z)zd

∣∣∣∣ =
∣∣P (z)∣∣∣∣zd∣∣ >

|ad|
2

> 0.

⇓
1∣∣P (z)∣∣ ≤ 2

|ad|
· 1

|z|d
≤ C ∀|z| > R.

Then outside the disk DR(0) f is bounded. f is bounded inside the disk since 1
P (z)

is holomorphic, thus continuous on DR(0), and thus bounded inside the compact disk.
Thus on C: ∣∣∣∣ 1

P (z)

∣∣∣∣ ≤ C.
By corollary (7.5), 1

P (z) is a constant. Thus P (z) is a constant. This is a contradiction

since we assumed that P (z) had positive degree.

Note 7.9 By repeating this argument we can show that P (z) of degree d has exactly d
roots in C, possibly non-distinct. That is to say that P (z) = ad(z − z1) · · · (z − zd).

Theorem 7.10 (Zeroes of Holomorphic Functions) f : Ω → C holomorphic, Ω
open and connected, f ̸≡ 0 on Ω. Then the zeroes for f inside Ω are isolated. That is
to say that if f(z0) = 0, z0 ∈ Ω then ∃V ⊂ Ω open such that f(z) ̸= 0∀z ∈ V \ {0}.

Proof: Suppose z0 is a non-isolated zero of f . We claim that f ≡ 0 in some neigh-
bourhood of z0. To show the claim, we let f(z) =

∑∞
n=1 an(z − z0)

n, which is ab-
solutely convergent near z0. Then if the claim is false, ∃n > 0 s.t. an ̸= 0. Define
g(z) = an + an+1(z − z0) + · · · . Then:

f(z) = (z − z0)n(an + an+1(z − z0) + · · · )
= (z − z0)ng(z).

g(z) is the power series for f , but with coefficients shifted by n. Thus g(z) is holomorphic
on some small disk centered at z0 (an absolutely convergent power series with shifted

coefficients is still absolutely convergent on the same disk). g(z0) = an ̸= 0
cont
===⇒ g(z) ̸= 0

for z close to z0. Since f(z) = (z− z0)ng(z) we get that z0 cannot be a non-isolated zero
of f .
We return to the theorem. Let Ω′ = { z ∈ Ω | f ≡ 0 in some neighbourhood of z }.

The claim shows that z0 ∈ Ω′, and thus Ω′ ̸= ∅. Ω′ is open (since for any point, f is
zero around that point). Ω′ is also closed.

To see this, suppose you have a sequence {zn}∞n=0 ∈ Ω′, zn
n→∞−−−→ z∞ ∈ Ω. f(zn) =

0
cont
===⇒ f(z∞) = 0. Then z∞ is a non-isolated zero of f (because it is a limit of zeroes).
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By the claim f ≡ 0 around z∞, thus z∞ ∈ Ω′. Thus Ω′ is closed. This implies, applying
connectedness, that Ω′ = Ω. Thus f ≡ 0 on Ω, contradiction.

Definition 7.11 (Order of Vanishing) In the proof we showed that if f holomorphic
in Ω ∋ z0, f ̸≡ 0, then we can write f(z) = (z − z0)Ng(z), where g ̸= 0 near z0. Then
N is called the order of vanishing of f at z0.

Corollary 7.12 (Identity Principle) Suppose you have f, g : Ω → C holomorphic

such that ∃{zj}∞j=0, zj
j→∞−−−→ z∞ ∈ Ω (with zi ̸= zj for i ̸= j) such that f(zj) = g(zj)∀j.

Then f ≡ g on Ω.

Proof: If f − g ̸≡ 0 then the zeroes of f − g must be isolated, but they are not by the
assumption (the assumption says to assume that f − g has a non-isolated zero).

Definition 7.13 (Analytic Continuation) Suppose you have Ω1 ⊂ Ω2 open con-
nected. Suppose f : Ω1 → C holomorphic and F : Ω2 → C holomorphic such that
f = F |Ω1 (ie f(z) = F (z) ∀z ∈ Ω1) then F is called an analytic continuation of f to
Ω2.

Note 7.14 (Uniqueness of Analytic Continuations) Corollary (7.12) shows that
if F and F ′ are both analytic continuations of f to Ω2, then F ≡ F ′ (since F and
F ′ will agree on Ω1 and thus are equal).
We can thus refer to F as the (unique) analytic continuation of f to Ω2.

We now present a bit of review material in preparation for a discussion of normal
families.

7.2 Ascoli-Arzelà’s Theorem

Proposition 7.15 Suppose that ∃f : Ω → C such that fn → f uniformly on compact
subsets of Ω. Then f is holomorphic on Ω.

Proof: Uniform convergence on compact subsets means that for any K ⊂ Ω compact
then supz∈K

∣∣fn(z)− f(z)∣∣ n→∞−−−→ 0.
Using theorem (4.1) and corollary (6.2), let z ∈ Ω. It suffices to show that f is

holomorphic on D = Dr(z) ⊂⊂ Ω for some r > 0. We check that f is holomorphic on D.
Let T ⊂ D a triangle. Then by theorem (4.1)

∫
∂T fn(z) dz = 0. On the other hand, for

D ⊂ K ⊂ Ω compact, then if fn
u−→ f it is easy to see that

∫
∂T fn(z) dz

u−→
∫
∂T f(z) dz.

Thus
∫
∂T f(z) dz = 0.

Note 7.16 This proposition says that if f is a uniform limit of holomorphic functions,
then f is also holomorphic. This is quite bizarre; a uniform limit of smooth functions
on a compact set need not be smooth. Stone-Weierstrass says that every continuous
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function can be uniformly approximated by polynomials (both smooth and analytic), and
thus that every continuous function is a uniform limit. This is quite different compared
to the complex case.

Theorem 7.17 (Ascoli-Arzelà) Let Ω open. Let {fn}∞n=0, fn : Ω → C holomorphic
on Ω. Suppose that

• fn is uniformly bounded (ie supz∈Ω
∣∣fn(z)∣∣ < C for some C),

• { fn } are uniformly equicontinuous on Ω (ie ∀ϵ∃δ s.t. if |x− y| < δ, x, y ∈ Ω, then∣∣fn(x)− fn(y)∣∣ < ϵ for all n).

Then ∃f : Ω→ C continuous (and holomorphic by the previous proposition) such that
fnj

u−→ f for some subsequence nj on compact subsets of Ω.

Note 7.18 Usually Ascoli-Arzelà is assumed on K compact, which results in the uni-
form convergence on K. This is an extension of the usual form. If you have the as-
sumptions on all of Ω, then in particular you have them for all compact subsets. Thus
for every compact set you obtain a uniform limit, and by exhaustion you can see that
the limit will always have to be the same function.
Ascoli-Arzelà tells you that on a compact set you have a uniform limit, which is there-

fore continuous, and the previous proposition tells you that this limit is holomorphic.
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Lecture 8: September 29

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

We begin with a small remark, inspired by a previous homework set.

Remark 8.1 Let γ1, γ2 be parameterized piecewise smooth curves, with the same initial
points and end points, and such that they do not cross except at endpoints (they enclose
a region Ω). If f holomorphic on Ω then

∫
γ1
f(z) dz =

∫
γ2
f(z) dz. This follows easily

by theorem (5.2) (Cauchy’s Theorem), since 0 =
∫
∂Ω =

∫
γ1
−
∫
γ2
.

γ1

γ2

Ω

This does not hold if f is not holomorphic on Ω. Consider f(z) = 1
z . Then we have

calculated (in an excluded example) that with γ1 the upper half unit circle and γ2 the
lower half unit circle that

∫
∂D1(0)

f(z) dz = −
∫
γ1
f(z) dz +

∫
γ2
f(z) dz = 2πi ̸= 0.

γ1

γ2

Ω

We now look at a comparatively non-trivial theorem. Montel’s Theorem give us a
sufficient an necessary condition for a family of holomorphic functions on a domain to
converge uniformly on compact sets to some limit.

8.1 Montel’s Theorem

Theorem 8.2 (Montel’s Theorem) Let fn : Ω → C holomorphic functions, n ∈ N.
Suppose that they are uniformly bounded on compact subsets of Ω (ie ∀K ⊂⊂ Ω compact
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∃CK > 0 s.t. supz∈K
∣∣fn(z)∣∣ ≤ CK ∀n). Then ∃ subsequence nj → ∞, ∃f : Ω → C

holomorphic s.t. fnj

u−→ f on compact subsets of Ω and f
(k)
nj

u−→ f (k) on compact subsets
of Ω, ∀k ≥ 0.

Definition 8.3 (Normal Family) A set of functions is called a normal family if ∃
subsequence nj → ∞ and ∃f : Ω → C holomorphic s.t. fnj

u−→ f on compact subsets of

Ω and f
(k)
nj

u−→ f (k) on compact subsets of Ω, ∀k ≥ 0.
Note that the case where k = 0 is simply the first sentence, and that if the k = 0 case

holds the k > 0 case is implied. Thus, it is sufficient to ignore the k > 0 case when
writing the definition.

Remark 8.4 Theorem (8.2) states that for a set of functions, uniformly bounded on
compact subsets implies normal.
If fn

u−→ f holomorphic on compact subsets then fn is uniformly bounded on compact
subsets. Without the subsequence part, being a normal family is essentially equivalent to
being uniformly bounded on compact sets.

Remark 8.5 {fn} uniformly bounded on compact subsets of Ω ⇐⇒ {fn} locally uni-
formly bounded (ie ∀ z0 ∈ Ω, ∃ r, C > 0 s.t. Dr(z0) ⊂⊂ Ω and supz∈Dr(z0)

∣∣fn(z)∣∣ ≤ C).
The right direction is simple, as each disk is covered by a compact set that is still in Ω.

To see the left direction, cover a compact set with disks. By compactness, we can reduce
the cover to finitely many disks. Take the maximum of the finitely many constants, and
you are done.

Remark 8.6 The content of theorem (8.2) is that it strengthens theorem (7.17) by re-
moving the assumption of equicontinuity. It also strengthens it by proving the statement
for all the derivatives.
Conversely, theorem (7.17) doesn’t need holomorphic (merely continuous), while the-

orem (8.2) does.

Proof:[8.2] This is a consequence of equation (5.1) and theorem (7.1). Let us first
prove that {fn} is equicontinuous on compact subsets of Ω. We must show that ∀K ⊂⊂ Ω
compact ∀ϵ > 0∃δ s.t. if x, y ∈ K,|x− y| < δ then

∣∣fn(x)− fn(y)∣∣ < ϵ, ∀n.
Since K compact and Ω closed, dist(K, ∂Ω) > 3r > 0 for some r. Let z, w ∈ K s.t.

|z − w| < r. Take a disk z ∈ D = D2r(w) ⊂ Ω of radius 2r around w.

8-2



Lecture 8: September 29

w

z

ζ

r >

2r

D

K

Ω

3r

Apply equation (5.1) to w and z and subtract:

fn(z)− fn(w) =
1

2πi

∫
∂D

fn(ζ)

(
1

ζ − z
− 1

ζ − w

)
dζ. (8.1)

By assumption then since D ⊂ K ′ ⊂ Ω for some K ′, fn is uniformly bounded inde-
pendent of n. Then:

|w − ζ| = 2r

|w − z| < r

4r ≥|ζ − z| = |ζ − w + w − z|
≥|ζ − w|︸ ︷︷ ︸

=2r

−|w − z|︸ ︷︷ ︸
<r

> r.

Thus: ∣∣∣∣ 1

ζ − z
− 1

ζ − w

∣∣∣∣ = |z − w|
|ζ − z| ·|ζ − w|

≤ |z − w|
2r · r

=
|z − w|
2r2

.
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Taking the modulus of equation (8.1):∣∣fn(z)− fn(w)∣∣ ≤ 1

2πi

∫
∂D

∣∣fn(ζ)∣∣︸ ︷︷ ︸
u.bd.<C

·|z − w|
2r2

dζ

(for some constant C̃) ≤ C̃|z − w| ∀n

This shows that the family { fn } is equicontinuous and uniformly bounded on compact
subsets of Ω. Thus we can apply theorem (7.17). Thus, ∀K ⊂⊂ Ω compact, ∃nj → ∞
subsequence, ∃f ∈ C0(K) s.t. fnj

u−→ f on K. By note (7.18), f is holomorphic on Ko.

We must now show that fn
u−→ f on all compact subsets (now we have proved that

for any compact set, there is some subsequence that converges on that compact set) and
that the derivatives converge.
We apply a diagonal argument. We can find an exhaustion {Ki } of Ω by compact

subsets:

K1 ⊂ K2 ⊂ · · · ⊂ Kj ⊂ Kj+1 ⊂ · · · ⊂ Ω

such that Kj ⊂ Ko
j+1 ∀j and that

⋃∞
j=1Kj = Ω,

K1

K2

K3

K4

1
j

Ω

e.g. Kj = { z ∈ C | dist(z, ∂Ω) ≥ 1
j } ∩Dj(0) (the disk of radius j around the origin is

to ensure boundedness). Now apply the first part of the proof to K1 to get { fn,1 } a

subsequence of { fn } s.t. fn,1
Co(K1)−−−−−→ f , f ∈ Co(K1), f holomorphic on Ko

1. Now apply
the first part of the proof to K2 and the family { fn,1 }. This yields a sub-subsequence

fn,2
Co(K2)−−−−−→ f̃ , f̃ ∈ Co(K2) holomorphic on Ko

2. The uniform limit is unique, thus f = f̃
on K1 by uniform convergence.

Repeat this procedure to { fn,2 } on K3 to get { fn,3 } etc. Finally take the sequence

{ fn,n }∞n=0. By construction, fn,n
u−→ f on all compact subsets of Ω.

This proves the first part of theorem (8.2). The statement about the derivatives
remains to be proved. For convenience, relabel so that fn

u−→ f on all compact subsets
of Ω. ∀k ≥ 0, given any point z0 ∈ Ω, take D = Dr(z) ⊂⊂ Ω for some r > 0. Apply

theorem (7.1) to the function f
(k)
n − f (k):

∀z ∈ D r
2
(z0) z

∣∣∣f (k)n (z)− f (k)(z)
∣∣∣ ≤ k!

rk
sup
∂D
|fn − f |

fn
u−→f−−−−→ 0
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where sup∂D|fn − f | → 0 since fn
u−→ f on D. Hence f

(k)
n → f (k) locally uniformly =⇒

f
(k)
n → f (k) uniformly on all compact subsets of Ω. This is what we wanted to prove,
hence we are done.

8.1.2 Some Examples

Example 8.7 For C∞ real functions this fails. Consider fn(x) = sin(nx) on [0, 1] ⊂ R.
Each fn is a uniformly bounded smooth function, but they are not equicontinuous, and
in fact have no convergent subsequence on any compact subset of [0, 1].

Example 8.8 Consider Ω ⊂ C open, Ω′ ⊂ C open and bounded. Define

F = { f : Ω→ Ω′ | f holomorphic } .

Then F is normal, as ∀f ∈ F , supΩ|f | ≤ diam(Ω′), which is finite since Ω′ is bounded.

Note 8.9 The concept of normal families extends very easily to uncountable sets in the
obvious way (still looking at countable sequences).

Remark 8.10 Part 3 of the proof of theorem (8.2) shows that if F is a normal family
of holomorphic function Ω → C, then ∀k ≥ 0, F (k) = { f (k) | f ∈ F } is also normal.
This will be used later in the course.

We now move backwards in the textbook, back to our original location of chapter 3.

8.2 Isolated Singularities, Poles

Recall from last time: Ω ⊂ C open connected, f : Ω → C holomorphic, f ̸≡ 0. Then
given z0 ∈ Ω,∃D disk containing z0. ∃N ≥ 0 and holomorphic s.t. g(w) ̸= 0∀w ∈ D s.t.
f(z0) = (z − z0)N · g(z) on D.
Recall that we defined the uniqueN in the previous section to be the order of vanishing,

and that when N = 1 we call z0 a simple zero.
Say now that instead of a zero we have a singularity, z0 ∈ Ω, f : Ω \ {z0} → C

holomorphic on Ω \ {z0}.

Ω

z0

D
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Definition 8.11 (Poles) We say that f has a pole at z0 if ∃D = Dr(z0) ⊂ Ω for some
r > 0 s.t. f(z) ̸= 0∀z ∈ D \ {z0} and the function:

f̃(z) :=

 1
f(z) z ∈ D \ {z0}
0 z = z0

is holomorphic on D.

To have a pole means to have a holomorphic function that is not defined at z0 but is
holomorphic outside, and must be non-zero on some punctured disk around z0.

Lemma 8.12 Suppose that f has a pole at z0. Then ∃D ∋ z0 disk, ∃g : D → C
holomorphic, g(z) ̸= 0∀z ∈ D and ∃!N ≥ 1 such that ∀z ∈ D \ {z0}:

f(z) =
g(z)

(z − z0)N
.

Example 8.13 1
z at z0 = 0 is the prototype of a pole.

Example 8.14 1
zn , n ≥ 1 at z0 = 0 is also a pole.

Proof:[8.12] Since f has a pole, let f̃ be the function described above. f̃ : D → C
holomorphic. By assumption f is never 0. Thus by construction, f̃ is non-zero except
at the isolated zero z0. By theorem (7.10) from last time we can write:

f̃(z) = (z − z0)Nh(z)

on some possibly smaller disk at z0, N ≥ 1 and h : D → C holomorphic and non-zero.
Now we let:

g(z) =
1

h(z)

and we are done.

Definition 8.15 (Order of Pole) We call the unique N in lemma (8.12) the order
of the pole. This is the analog to the order of the zero (the order of vanishing) defined
in definition (7.11). When N = 1 we call it a simple pole.

Lemma 8.16 (Laurent Series for Poles) Suppose that f has a pole of order N at
z0 ∈ Ω (f is implicitly holomorphic on the punctured disk). Then ∃D ∋ z0 disk such that
for z ∈ D \ {z0}:

f(z) =
a−N

(z − z0)N
+

a−N+1

(z − z0)N−1
+ · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+G(z)
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with aj ∈ C, G(z) holomorphic on D. Thus we can effectively write for z ∈ D \ {z0}:

f(z) =

∞∑
n=−N

an(z − z0)n.

This is the Laurent series of f centered at z0 (a pole).

Proof: Take lemma (8.12). Then on D \ {z0}:

f(z) =
g(z)

(z − z0)N

Expand g in power series on D:

g(z) =
∞∑
n=0

An(z − z0)n

and plug it in:

f(z) =
1

(z − z0)N
· (A0 +A1(z − z0) +A2(z − z0)2 + · · · )

(letting ai = Ai+N ) =

∞∑
n=−N

an(z − z0)n,

and we are done.

Definition 8.17 (Principal Part and Residue) When f has a pole at z0 we can
write:

f(z) =
−1∑

n=−N

an(z − z0)n +
∞∑
n=0

an(z − z0)n

The first sum is called the principal part of f at z0. a−1 =: Resz0(f) is called the
residue of f at z0. Note that |N | <∞.

Example 8.18 The function

f(z) =
1

z + 5

has a pole at z0 = −5. The order of the pole is 1. This is the Laurent Series of f at z0,
and thus Rez−5(f) = 1.

Example 8.19 The function

f(z) =
1

(z + 5)2

has a pole at z0 = −5. The order of the pole is 2. This is the Laurent Series of f at z0,
and thus Rez−5(f) = 0.
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Example 8.20 The function

f(z) =
1

z2 + 1
=

1

(z − i)(z + i)

has two poles: z = ±i. By plugging in z = ±i and ignoring the division by zero we get
that:

Resi(f) =
1

2i
,

Res−i(f) =
−1
2i
.
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Lecture 9: October 1

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

We spend more time on poles this lecture.

9.1 Poles and the Residue Formula

Note 9.1 Recall that a holomorphic function f has a pole at z0 if:

f̃(z) :=

 1
f(z) z ∈ D \ {z0}
0 z = z0

is holomorphic on D (a disk around z0). Naturally this implies that limz→z0
1

f(z) = 0.

This means that limz→z0f(z) = ±∞. This is to say that a pole is somehow a point
where f goes to ±∞.

We revisit an example from last lecture:

Example 9.2 The function

f(z) =
1

z2 + 1
=

1

(z − i)(z + i)

has two poles: z = ±i. Consider the pole i. Then:

1

z2 + 1
=

1

(z − i)(z + i)
=

1
z+i

z − i
=

g(z)

z − z0

for z0 = i. 1
z+i is indeed a non-vanishing and holomorphic function around i. We then

expand g(z) in a power series at z0 = i:

g(z) =
∞∑
n=0

an(z − i)n = a0 + · · ·

=
1

2i
+ · · · .

Thus a−1 =
1
2i in the Laurent series expansion, so Resi(f) =

1
2i . Similarly, Res−i(f) =

−1
2i .
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Lemma 9.3 Say f has a pole at z0 ∈ Ω of order N ≥ 1. Then:

Resz0(f) = lim
z→z0

[
1

(N − 1)!

(
∂

∂z

)N−1 [
(z − z0)N · f(z)

]]
.

Note 9.4 Multiplying by (z− z0)N makes your function holomorphic. We then take the
derivative and divide by (N − 1)! to readjust it after taking the derivative.

Proof:[9.3] Expand f by lemma (8.16). Then:

f(z) =
a−N

(z − z0)N
+ · · ·+ a−1

z − z0
+G(z)

(z − z0)Nf(z) = a−N + · · ·+ (z − z0)N−1a−1 + (z − z0)NG(z).

Then note that (z − z0)NG(z) vanishes to order at least N at the point z0. Since
taking the derivative reduces the order of vanishing by 1, the N − 1’th derivative of
(z − z0)NG(z) vanishes to order at least 1 at the point z0. Thus:

lim
z→z0

[(
∂

∂z

)N−1 [
(z − z0)Nf(z)

]]
= a−1(N − 1)! + lim

z→z0

[(
∂

∂z

)N−1 [
(z − z0)NG(z)

]]
= a−1(N − 1)! + 0

= a−1(N − 1)!.

Example 9.5 Consider:

f(z) =
ez

z5
=
g(z)

z5
.

Then the denominator vanishes at 0, and the numerator never vanishes. Thus f has
a pole of order 5 at z0 = 0. We approach this in two ways:

1. We directly compute the residue. Expand ez =
∑ zn

n! as a power series around
z0 = 0. Then:

f(z) =
1

z5
+

1

z4
+

1

2z3
+

1

6z2
+

1

24z
+ · · · .

We can directly observe that the residue is 1
24 .

2. Use lemma (9.3). Then N = 5:

Res0(f) = lim
z→0

1

4!

(
∂

∂z

)4

ez

= lim
z→0

1

4!
ez

=
1

4!
.
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Lemma 9.6 Suppose f has a pole at z0 ∈ Ω and expand f(z) =
∑∞

n=−N an(z − z0)n in
Laurent series around z0 for some D = Dr(z0) ⊂⊂ Ω. Then ∀n:

an =
1

2πi

∫
D

f(z)

(z − z0)n+1
dz.

Proof: On D \ {z0}:

f(z)

(z − z0)n+1
=

∞∑
j=−N

aj(z − z0)j−n−1

∫
D

f(z)

(z − z0)n+1
dz =

∞∑
j=−N

aj

∫
D
(z − z0)j−n−1 dz︸ ︷︷ ︸

2πi if j−n−1=−1; 0 else

= an · 2πi.

We now present a theorem that is theoretically not very powerful, but is very useful
for calculations:

Theorem 9.7 (Residue Formula) Suppose f holomorphic on Ω\{ z1, · · · , zN } , zj ∈
Ω. Suppose that f has poles at z1, · · · , zN . Let Ω′ ⊂⊂ Ω open subset with piecewise
smooth boundary with z1, · · · , zN ∈ Ω′. Then:

1

2πi

∫
∂Ω′

f(z) dz =

N∑
i=1

Reszi(f).

Note 9.8 Note that you don’t have to have Ω′ ⊂⊂ Ω, just that it’s holomorphic on the
closure of Ω. Note that this also contains theorem (5.2) as a trivial case (when N = 0).
In general there is no reason for the sum of the residues to be zero.

z1

z2

z3Ω′

Ω
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Proof: Apply theorem (5.2) to some small disks around each pole. By assumption, f
is holomorphic on Ω′ \

⋃N
i=1Dr(zi) for some small r > 0. Theorem (5.2) applies on this

new domain (parameterizing ∂Dr(zi) counterclockwise to achieve a negative):

0 =

∫
∂Ω′

f(z) dz −
N∑
j=1

∫
∂Dr(zj)

f(z) dz

(apply lemma (9.6)) =

∫
∂Ω′

f(z) dz −
N∑
j=1

2πi ·Reszj (f).

9.2 Applications of Residue Formula

Example 9.9 D = D2(z). Compute
∫
∂D

z+1
z2+1

dz. This is hard to compute directly, but
easy to do with residues. f has two simple poles at z0 = ±i:∫

∂D

z + 1

z2 + 1
dz = 2πi

(
Resi

(
z + 1

z2 + 1

)
+Res−i

(
z + 1

z2 + 1

))

(from example (9.2)) = 2πi

(
1 + i

2i
+
−i+ 1

−2i

)
= 2πi.

Example 9.10 Evaluate
∫∞
−∞

dx
1+x2 . We use the contour of the semicircle on the upper

half plane of radius R.

−R Rγ1

γ2 γR

i

−i

Now note that: ∣∣f(z)∣∣ = 1∣∣a+ z2
∣∣ ≤ 2

|z|2
=

2

R2
,∣∣∣∣∣

∫
γ2

dz

1 + z2

∣∣∣∣∣ ≤ L(γ2) · 2

R2
= πR

2

R2

R→∞−−−−→ 0.
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Thus: ∫
∂R

dz

1 + z2
=

∫
γ1

dz

1 + z2
+
��

����*
0∫

γ2

dz

1 + z2
= 2πi ·Resi

(
1

1 + z2

)
= π.

=⇒
∫
γ1

dz

1 + z2
=

∫
R

dz

1 + z2
= π.

Example 9.11 Consider
∫∞
−∞

eax

1+ex dx. Note that
(

eax

1+ex

)
x→±∞−−−−→ 0. Thus 0 < a < 1

(otherwise the integral will diverge at ±∞).
We propose to use f(z) = eax

1+ex . This has poles when ez = −1, thus when z =
πi+ 2πik, k ∈ Z.
We propose this contour:

−R R

R+ 2πi−R+ 2πi

γ1

γ2

γ3

γ4 πi

By the residue formula:∫
γ1

+

∫
γ2

+

∫
γ3

+

∫
γ4

= 2πi ·Resπi (f) .

Since these are simple poles:

Resπi (f) = lim
z→πi

(z − πi)f(z)

= lim
z→πi

eaz(z − πi)
1 + ez

.

We expand the denominator using h(z) = ez at z0 = πi :

h(z) = h(z0) + h′(z0)(z − z0) + o(|z − z0|)
= eπi + eπi(z − πi) + o(|z − πi|)
= −1− (z − πi) + o(|z − πi|).

ez + 1 = −(z − πi) + o(|z − πi|).

Thus:

Resπi (f) = lim
z→πi

eaz(z − πi)
1 + ez

= lim
z→πi

(
−eaz + o(1)

)
= −eaπi.
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Evaluating the γ1 term:∫
γ1

f(z) dz =

∫ R

−R

eax

1 + ex
dx

R→∞−−−−→
∫ ∞

−∞

eax

1 + ex
dx.

Evaluating the γ3 term, remaining conscious of the fact that γ3 is γ1 evaluated back-
wards but shifted up 2πi: ∫

γ3

f(z) dz =

∫
γ3

eaz

1 + ez
dz

=

∫
γ1

ea(z+2πi)

1 + e(z+2πi)
dz

= −e2πia
∫
γ1

f(z) dz.

Where the minus sign is because we parameterize γ3 in the opposite direction compared
to γ1, and the factor of e2πia comes from the fact that the parameterization of γ3 involves
adding 2πi to the parameterization of γ1.
Evaluating the γ2 term with parameterization z(t) = R+ it, t ∈ [0, 2π]:∣∣∣∣∣

∫
γ2

f(z) dz

∣∣∣∣∣ =
∣∣∣∣∣
∫ 2π

0

ea(R+it)

1 + eR+it
i dt

∣∣∣∣∣
≤
∫ 2π

0

∣∣∣∣∣ ea(R+it)

1 + eR+it
i

∣∣∣∣∣dt
=

∫ 2π

0

eaR∣∣1 + eR+it
∣∣ dt

≤
∫ 2π

0

eaR

eR − 1
dt

(for some constant C) ≤
∫ 2π

0
Ce(a−1)R dt

R→∞−−−−→ 0.

Similarly for γ4 with parameterization z(t) = −R− it, t ∈ [0, 2π]:∣∣∣∣∣
∫
γ4

f(z) dz

∣∣∣∣∣ =
∣∣∣∣∣
∫ 2π

0

e−a(R+it)

1 + e−(R+it)
idt

∣∣∣∣∣
≤
∫ 2π

0

∣∣∣∣∣ e−a(R+it)

1 + e−(R+it)

∣∣∣∣∣dt
(for some constant C) ≤

∫ 2π

0
Ce−aR dt

R→∞−−−−→ 0.
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Finally this implies that, since sin(z) = eiz−e−iz

2i :

−2πieaπi = (1− e2πia)
∫
R

eax

1 + ex
dx.

=⇒
∫
R

eax

1 + ex
dx =

2πi

eπia − e−πia
=

π

sin(πa)
.

And thus we are done.
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Lecture 10: October 6

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

We go into more depth on isolated singularities of functions.
Let Ω ⊂ C open, z0 ∈ Ω, f : Ω \ {z0} → C holomorphic. Then z0 is a possible isolated

singularity of f .

Definition 10.1 (Singularity) Let Ω ⊂ C open, z0 ∈ Ω, f : Ω\{z0} → C holomorphic.
z0 is said to be a singularity of f if f cannot be extended to a holomorphic function
over all of Ω (especially at z0).

Theorem 10.2 Let 0 ≤ r < R. Consider A = { z ∈ C | r < |z − z0| < R } (when r = 0
this gives you a punctured disk). Let f : A → C holomorphic. Then for every r < r′ <
R′ < R, we can write f as a Laurent series:

f(z) =

∞∑
−∞

an(z − z0)n r′ ≤|z − z0| ≤ R′,

and this series is absolutely convergent on this smaller annulus { z ∈ C | r′ < |z − z0| < R′ }
and ∀u ∈ (r,R):

an =
1

2πi

∫
|z−z0|=u

f(w)

(w − z0)n+1
dw.

r
Rz0

Note 10.3 When we say that
∑∞

−∞ an(z − z0)n is absolutely convergent we mean that

both
∑∞

0 an(z − z0)n and
∑0

−∞ an(z − z0)n are absolutely convergent.
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Example 10.4 Consider f(z) = e
1
z on C∗ = C\{0}. The Laurent series on any annulus

{ r < |z| < R } is given by:

f(z) =
∞∑
n=0

z−n

n!
.

Proof: On smaller annulus, f is holomorphic by assumption, so we apply equation
(5.1). Noting that r′ ≤|z − z0| ≤ R′:

r′

R′
z0

f(z) =
1

2πi

∫
|w−z0|=R

f(w)

w − z
dw − 1

2πi

∫
|w−z0|=r

f(w)

w − z
dw.

Using the fact that w − z = w − z0 − (z − z0) = (z − z0)
(
w−z0
z−z0

− 1
)
:

f(z) =
∞∑
n=0

an(z − z0)n −
1

2πi

∫
|w−z0|=r

f(w)

w − z
dw,

with an =
1

2πi

∫
|w−z0|=R

f(w)

(w − z0)n+1
.dw

Note that we cannot use the same trick for the second term since f is not holomorphic
inside the disk (so the power series does not converge in it). We can still do something
similar. Noting that:

r

R

z0 z×
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w − z = −(z − z0)
(
1− w − z0

z − z0

)
,

and that

∣∣∣∣w − z0z − z0

∣∣∣∣ ≤ r

r′
< 1,

we get that:

− 1

w − z
=

1

z − z0
· 1

1− w−z0
z−z0

=
1

z − z0
·

∞∑
n=0

(
w − z0
z − z0

)n

=
∞∑
n=0

(w − z0)n

(z − z0)n+1

(relabel) =
−∞∑
n=0

(z − z0)n−1

(w − z0)n

(relabel) =

−∞∑
n=−1

(z − z0)n

(w − z0)n+1
.

This new representation of −1
w−z has strictly negative powers of (z − z0), exactly what

we want:

f(z) =
∞∑
n=0

an(z − z0)n −
1

2πi

∫
|w−z0|=r

f(w)

w − z
dw

=
∞∑
n=0

an(z − z0)n +
−∞∑
n=−1

an(z − z0)n,

where the an in the second part of the sum comes from the same formula that gave us
an in the first part of the sum: an = 1

2πi

∫
|w−z0|=r

f(w)
(w−z0)n+1 dw. Note that you can use

any radius you want that is in the annulus, especially r and R. The integral evaluates
to the same thing by theorem (5.2).

Remark 10.5 In the case of poles we get the same Laurent series that we had before
(ie

∑∞
−N an(z − z0)n). This theorem says that for a general holomorphic function the

index of the sum can extend backwards to −∞.

Laurent series allow us to study isolated singularities.

10.1 Classification of Singularities

Theorem 10.6 (Riemann Extension Theorem) Let Ω ⊂ C open , z0 ∈ Ω, f :

Ω \ {z0} → C holomorphic. Suppose that supΩ\{z0}|f | < ∞. Then ∃!f̃ : Ω → C
holomorphic s.t. f̃ |Ω\{z0}= f .
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Definition 10.7 (Removable Singularities and Holomorphic Extensions) We call
this f̃ a holomorphic extension of f across z0, and we will say that z0 is a removable
singularity of f .

Remark 10.8 If f̃ : Ω → C holomorphic and we call f = f̃ |Ω\{z0} then obviously
supDr(z0)\{z0}|f | <∞ for r small, thus boundedness of |f | is necessary and sufficient for
z0 being a removable singularity.

Proof:[10.6] Let R > 0 small enough such that DR(z0) ⊂⊂ Ω, and so
∣∣f(z)∣∣ ≤ C for

some C > 0, ∀z such that 0 < |z − z0| < R. Expand f in Laurent series on this annulus:

f(z) =

∞∑
−∞

an(z − z0)n,

with an =

∫
|w−z0|=R

f(w)

(w − z0)n+1
dw.

So for n = −m, m > 0 (ie n < 0):

|a−m| ≤
1

2π
·

∣∣∣∣∣
∫
|w−z0|=R

f(w)

(w − z0)−m+1
dw

∣∣∣∣∣
=

1

2π
·

∣∣∣∣∣
∫
|w−z0|=R

f(w)(w − z0)m−1 dw

∣∣∣∣∣
let (w(t) = z0 +Reit) =

∣∣∣∣∣
∫
|w−z0|=R

f(z0 +Reit)Rm−1 +Rei(m−1)tRieit dt

∣∣∣∣∣
≤ Rm · C R→0−−−→ 0.

Where the final line comes from the fact that|f | is bounded, and the fact that
∣∣eix∣∣ = 1.

Thus letting R → 0 we get that |a−m| = 0 ∀m > 0. Thus the Laurent series has no
negative powers.
Let f̃(z) =

∑∞
n=0 am(z − z0)n on DR(z0). This agrees with f on DR(z0) \ {z0}, so we

get a holomorphic extension of f across z0. The uniqueness of f̃ was already discussed
(compare to analytic continuation).

Corollary 10.9 f : Ω \ {z0} → C holomorphic. f has a pole at z0 iff
∣∣f(z)∣∣ z→z0−−−→∞.

Proof:

⇒ By definition of pole, 1
f(z) (well-defined near z0) has a zero at z0. Thus

∣∣∣ 1
f(z)

∣∣∣ z→z0−−−→ 0

which implies that
∣∣f(z)∣∣ z→z0−−−→∞.

⇐ Since f goes to infinity near z0, f(z) ̸= 0 ∀z ∈ Dr(z0) \ {z0} for some r > 0
small. Thus 1

f(z) is holomorphic on Dr(z0)\{z0} and supDr(z0)\{z0}
1

|f(z)| ≤ C since

|f | → ∞.
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Since 1
f(z) is holomorphic and bounded, theorem (10.6) applies to it. Thus z = z0

is a removable singularity of 1
f(z) , and since |f | → ∞ then

∣∣∣ 1f ∣∣∣ z→z0−−−→ 0. Thus the

holomorphic extension of 1
f(z) at z0 has value 0. Thus z0 is a pole of f .

We can now examine the 3 different kinds of poles.

10.1.2 Types of Poles

Definition 10.10 (Classification of Singularities) z0 ∈ Ω, f : Ω \ {z0} → C holo-
morphic (z0 is a singularity of f).
There are three mutually exclusive cases:

1. z0 is a removable singularity of f ⇐⇒ |f | < C near z0 (iff by theorem (10.6)),

2. z0 is a pole of f ⇐⇒ |f | z→z0−−−→∞,

3. z0 is an essential singularity of f ⇐⇒ z0 is neither removable nor a pole.

Example 10.11 f(z) = e
1
z has an essential singularity at z0 = 0. Consider

∣∣∣e 1
z

∣∣∣ as
z → 0:

0 < z ∈ R: e
1
z

x→0−−−→ +∞

0 > z ∈ R: e
1
z

x→0−−−→ 0

z = iy, y ∈ R:
∣∣∣∣e−i

y

∣∣∣∣ = 1 (however the argument varies wildly)

Thus this is neither a pole nor a removable singularity.

You can detect the type of singularity by examining the Laurent series:

Note 10.12 Let f(z) =
∑∞

n=−∞ an(z − z0)n. Three distinct cases:

1. f(z) =
∑∞

n=0 an(z − z0)n. This implies z0 is a removable singularity.

2. f(z) =
∑∞

n=−N an(z − z0)n. This implies z0 is a pole.

3. f(z) =
∑∞

n=−∞ an(z − z0)n. This implies z0 is an essential singularity.

Theorem 10.13 (Casorati-Weierstraß) Suppose f : Ω \ {z0} → C holomorphic and
z0 an essential singularity. Then ∀r > 0 small such that Dr(z0) ⊂ Ω, we have that
f(Dr(z0) \ {z0}) is dense in C.
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Proof: Suppose that A = f(Dr(z0) \ {z0}) is not dense. Then A ̸= C. Thus ∃w ∈ C,
w /∈ A. Then w has positive distance from A, ie ∃δ > 0 s.t.

∣∣f(z)− w∣∣ > δ, ∀z ∈ A.
Let g(z) = 1

f(z)−w , z ∈ A (this is okay since we know that
∣∣f(z)− w∣∣ > 0). This is

holomorphic on A with g ̸= 0 on the punctured disk.
Then

∣∣g(z)∣∣ < 1
δ ∀z ∈ A, so z0 is a removable singularity for g. Two cases follow:

g(z0) ̸= 0: g(z) = 1
f(z)−w , g(z) ̸= 0 near z0, thus we take 1

g(z) +w = f(z). Since this is a sum
of two holomorphic functions, f is also holomorphic at z0. Thus z0 is a removable
singularity of f , which is absurd.

g(z0) = 0: Then since g ̸= 0, z0 is an isolated zero of g with an order of vanishing of N ≥ 1.
So f(z) = w+ 1

g(z) . This is holomorphic on A as the sum of two functions that are

holomorphic on A. Since 1
g(z) has a pole at z0, so does f(z), which is absurd.

Remark 10.14 We have a trichotomy of singularities. Removable singularities are in
a sense not real singularities. Poles are our friends; they have residues and we can use
the residue formula on them. Essential singularities are wild and bad, and behave very
badly.

Poles are special enough that we give a name to functions that are composed of only
poles for singularities.

Definition 10.15 (Meromorphic Functions) A function f on Ω open is called mero-
morphic if there is a countable collection {zi}∞i=0 ⊂ Ω of points with no accumulation
point inside Ω (accumulation points on the boundary is possible), and f : Ω\

⋃∞
j=0{zj} →

C holomorphic function such that zj’s are all poles of f .
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Lecture 11: October 8

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

11.1 Meromorphic Functions

We start by giving an examples of meromorphic functions (defined at the end of last
class).

Example 11.1 (Meromorphic Functions)

1. Anything that we have already seen with a pole.

e.g. 1
z ,

1
z2
, 1

z2+1
, 1

(z−5)3
, · · ·

2. Rational functions (a ratio of two finite polynomials)

e.g. z
z2+1

, 1+z+z2

(z−1)2
, z−4

z+5 , · · ·

3. Ratio of two holomorphic functions (with denominator ̸≡ 0)

e.g. ez

z2+1
, z5+2

cos(z) , · · ·

Note 11.2 Case 2 follows from case 3 as a special case. We will now prove case 3.

Proposition 11.3 The ratio of two holomorphic functions f(z)
g(z) , with g(z) ̸≡ 0, is a

meromorphic function.

Proof: f, g holomorphic. Thus f(z)
g(z) is holomorphic at all z s.t. g(z) = 0. The zeroes

of g are isolated. Let z0 be a point where g vanishes. Let N ≥ 1 be the order of vanishing
of g at z0. If f ≡ 0 we are done. Thus there are three cases to consider:

1. f(z0) ̸= 0 :

Then we can consider the reciprocal g(z)
f(z) . This is non-zero in Dr(z0) \ {z0} for

some r > 0. This new function has a zero of order N at z0. By definition, f(z)
g(z) has

a pole at z0 of order N .

2. f(z0) = 0 with order M < N :

Then we write f(z) = h1(z) · (z − z0)M and g(z) = h2(z) · (z − z0)N near z0 with

h1, h2 holomorphic on Dr(z0). Then
f(z)
g(z) = h1(z)·(z−z0)M

h2(z)·(z−z0)N
= h1(z)

h2(z)
· 1
(z−z0)N−M , which

is a pole of order N −M .
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3. f(z0) = 0 with order M ≥ N :

Then, following exactly from case 2, we write f(z)
g(z) = h1(z)

h2(z)
· (z − z0)M−N , which is

holomorphic at z0 with a removable singularity.

Thus f(z)
g(z) is meromorphic with every pole being a zero of g(z).

Note 11.4 This is the most general formulation of a meromorphic function.

11.2 Point at Infinity

Consider C. C is not compact, but we can add a single point (our so called “∞”) and
define a topology on C ∪ {∞} such that it is compact.

Definition 11.5 (Neighborhood of ∞) A neighborhood of ∞ is a set U ⊂ C open
such that {|z| > R } ⊂ U for some R > 0

×∞

R C

|z| > R

0

⇓

×
∞

0

If f : U → C holomorphic where U is a neighborhood of ∞, we can consider F (z) =
1

f(z) , a holomorphic function on {|z| < 1
R } \ {0}, a punctured neighborhood around 0.

This set is obtained by taking the reciprocal of |z| in the above definition on U . Thus
switching z with 1

z in some way swaps ∞ with 0.
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Definition 11.6 (Behaviour at ∞) Consider a function f(z) and the function F (z) =
f(1z ). We say that:

• f is holomorphic at ∞ if F has a removable singularity at 0.

• f has a pole of order N at ∞ if F has a pole at 0 of order N .

• f has an essential singularity at ∞ if F has an essential singularity at 0.

• f meromorphic on U is meromorphic at ∞ if f does not have an essential
singularity at ∞.

Example 11.7 It is easy to get lost in the definition of F ; take care not to.

• e
1
z , which has an essential singularity at 0, is holomorphic at ∞. This is because
F (z) = ez is holomorphic at 0.

• z2, and entire holomorphic function, has a pole at ∞ of order 2. This is because
F (z) = 1

z2
has a pole of order 2 at 0.

• ez has an essential singularity at ∞.

Theorem 11.8 (Characterization of Rational Functions) Suppose f meromorphic

on C and f meromorphic at ∞. Then f is a rational function (f(z) = P (z)
Q(z) , P,Q ∈

C[z], Q ̸≡ 0).

Note 11.9 This theorem means that we can classify meromorphic functions as rational
iff they are meromorphic at ∞. This is significant since the set of polynomials is much
smaller than the set of all meromorphic functions. This also implies that almost all
meromorphic functions will have an essential singularity at ∞ (since few are rational,
and all others must have an essential singularity at ∞).

Proof:[11.8] Let f meromorphic on C. Then the poles of f do not accumulate in C.
The poles of f cannot accumulate at ∞ since f is meromorphic at ∞ (since f(1z ) has a
pole or removable singularity at 0, it will be holomorphic and non-zero in Dr(0) \ {0}
for some r > 0, so f has no poles in some punctured neighborhood of ∞).

It follows that since they cannot accumulate anywhere, f has finite poles { z1, · · · , zn }
(and possibly ∞). Let zk be a pole in C. Write for z near zk:

f(z) = fk(z)︸ ︷︷ ︸
principal

+ gk(z)︸ ︷︷ ︸
hol′c

with gk(z) a polynomial in 1
z−zk

. We do the same at ∞:

f

(
1

z

)
= f̃∞(z)︸ ︷︷ ︸

principal

+ g̃∞(z)︸ ︷︷ ︸
hol′c

.
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Note that f̃∞(z) could be equal to 0 if there is no pole at ∞. Note further that g̃∞(z)
is holomorphic in a neighborhood of 0.

Let f∞(z) = f̃∞

(
1
z

)
. Since f̃∞ is a polynomial in 1

z , f∞ is a polynomial in z. Let:

H(z) = f(z)− f∞(z)−
n∑

k=1

fk(z).

H is a holomorphic function on C \
⋃n

k=1{zk}. Near zk we have that f∞ is bounded
(as it is a polynomial), that f − fk is bounded (since it is equal to gk, a holomorphic
function), and that fi (for i ̸= k) is bounded. Thus H is bounded near zk. Near ∞ we
have:

H

(
1

z

)
= f

(
1

z

)
− f∞

(
1

z

)
−

n∑
k=1

fk

(
1

z

)

(P (x) := “a polynomial in x”) = f

(
1

z

)
− f̃∞ (z)︸ ︷︷ ︸

g̃∞(z)

−
n∑

k=1

Pk

(
1

1
z − zk

)
.

Both of these are bounded since g̃∞ is bounded for z close to 0 and

(
1

1
z
−zk

)
z→0−−−→ 0

(hence the rightmost sum of polynomials is bounded). Thus H is bounded in a neighbor-
hood of ∞ and bounded in some union of neighborhoods

⋃n
j=1Dr(zj) \ {zj}. But H is

holomorphic (and thus bounded) on the complement of these neighborhoods (since H is
meromorphic with all possible poles caught by our neighborhoods). H is thus bounded
on C. By corollary (7.5), H(z) = c ∈ C is constant. Thus:

f =
n∑

k=1

fk︸ ︷︷ ︸
rational

+ f∞ + c︸ ︷︷ ︸
polynomial

Thus f is a rational function.

11.3 Argument Principle/Logarithmic Derivative Formula

The main usefulness of meromorphic functions is their applicability to this following
theorem:

Theorem 11.10 (Argument Principle/Logarithmic Derivative Formula) f mero-
morphic on Ω ⊂ C open, Ω′ ⊂⊂ Ω open subset with piecewise smooth boundary. Suppose
that f has no zeroes and no poles on ∂Ω′. Then:

1

2πi

∫
∂Ω′

f ′(z)

f(z)
dz = # { zeroes of f in Ω′ (with multiplicities) }

−# { poles of f in Ω′ (with multiplicities) } .
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Note 11.11
(
f ′

f

)
is called the logarithmic derivative, naively “(log(f))′” . “With mul-

tiplicities” means that a zero/pole of order N counts like N .

Ω′

×

×
×

Proof:[11.10] Let us investigate the behaviour of
(
f ′

f

)
. Let z0 be either a zero of

order N or a pole of order −N of f inside Ω′. We want to expand in a Laurent series;
f(z) =

∑∞
n=N an(z − z0)n with aN , N ̸= 0.

We can write f(z) = (z−z0)N ·g(z) for z near z0 where g is holomorphic and non-zero
in a neighborhood of z0. Thus on Dr(z0) \ {z0}:

f ′(z)

f(z)
=
N(z − z0)N−1g(z) + (z − z0)Ng′(z)

(z − z0)Ng(z)

=
N

z − z0
+
g′(z)

g(z)
.

The second term is holomorphic. The first term is a simple pole with residue N . Thus

Resz0

(
f ′

f

)
= N . The same computation on g′(z)

g(z) yields a similar equation, but with

N = 0, indicating that there are no poles along the boundary. Applying theorem (9.7)
gives us:

1

2πi

∫
∂Ω′

f ′(z)

f(z)
dz =

∑
zi∈S

Resz0

(
f ′

f

)
=
∑

zeroes

1−
∑
poles

1.

where S is the set of all poles of f ′

f in Ω′. This is the same as the set of all zeroes and
poles of f .

Theorem 11.12 (Rouché) f, g holomorphic on Ω, Ω′ ⊂⊂ Ω, Ω′ piecewise smooth
boundary. Suppose that

∣∣f(z)∣∣ > ∣∣g(z)∣∣ ∀z ∈ ∂Ω′. Then f and f + g have the same
number of zeroes in Ω′ (counted with multiplicities).

Note 11.13 The logic of this theorem is that g is some kind of perturbation such that
on the boundary g has less effect than f . Then the number of zeroes does not change.
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Proof:[11.12] Use a “homotopy argument”.
Connect f and f + g via ft(z) = f(z) + tg(z), t ∈ [0, 1]. Then ft holomorphic on

Ω ∀t. Let nt = # { zeroes of ft inside Ω′ } (we want to show that n0 = n1). We shall
show that nt is constant in t by applying theorem (11.10). To apply it, we must have
that f has no zeroes on the boundary (it has no poles since it is holomorphic). Then for
z ∈ ∂Ω′: ∣∣ft(z)∣∣ = ∣∣f(z) + tg(z)

∣∣ ≥ ∣∣f(z)∣∣− t∣∣g(z)∣∣
(since t ∈ [0, 1]) ≥

∣∣f(z)∣∣−∣∣g(z)∣∣
(apply assumption) > 0.

Thus ft has no zeroes on the boundary, so:

nt =
1

2πi

∫
∂Ω′

f ′(z)

f(z)
dz.

Now note that ft is a C
0 function in both z and t. Thus the contour integral in z is

a C0 function of t. It follows that the map [0, 1] → Z, t 7→ nt is continuous. Since Z is
disconnected, nt must be constant.
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12.1 Applications of Rouché’s Theorem

Recall theorem (11.12) (Rouché’s Theorem) from last lecture. There is a useful rephras-
ing which is useful in practice:

Corollary 12.1 (Rouché Rephrased) |f − g| < |f | on ∂Ω =⇒ f and g have the
same number of zeroes in Ω.

Proof:
This follows by renaming g as f − g in theorem (11.12).

Example 12.2 How many roots does P (z) = z8 − 5z3 + z − 2 have in D = D1(0)?
We want to compare g = P with f suitably chosen, so that we know that number of

zeroes of f in D, and we can prove |f − g| < |f | on ∂Ω.

Try f = −5z3:

|f − g| =
∣∣∣z8 + z − 2

∣∣∣
≤
∣∣∣z8∣∣∣+|z|+ 2 = 4.

|f | = 5
∣∣∣z3∣∣∣ = 5.

So this works, and thus we know that P (z) has 3 zeroes in D1(0).

Example 12.3 How many roots does P (z) = z8 − 5z3 + z − 2 have on the annulus
D = D2(0) \D1(0)?
The number of roots in D is equal to the number of roots in D2(0) minus the number

of roots in D1(0) (which has 3 roots).

Try f = −z8:

|f − g| =
∣∣∣−5z3 + z − 2

∣∣∣
≤
∣∣∣5z3∣∣∣+|z|+ 2 = 44.

|f | =
∣∣∣z8∣∣∣ = 256.
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So this works, and thus we know that P (z) has 8 zeroes in D2(0). It follows that
P (z) has 5 roots D.

Note 12.4 The tactic here is to pick the single term that will be the largest, and hope
that it will work.

12.2 Residue at Infinity

Remark 12.5 Theorem (9.7) holds for functions that have arbitrary isolated singulari-
ties, not just for poles.

Theorem 12.6 Ω ⊂ C open, Ω′ ⊂⊂ Ω with piecewise smooth boundary, f holomorphic
on Ω except for finitely many points z1, · · · , zN ∈ Ω′. Then:

1

2πi

∫
Ω′
f(z) dz =

N∑
i=1

Reszi (f) .

Note 12.7 When we first defined this formula, we did not have a concept of Laurent
series at all points. In following classes we showed that you can consider a Laurent series
at any point (possibly extending backwards to −∞), so naturally you can consider a−1

in the Laurent expansion at any point.

Proof:[12.6] Exactly the same as the proof for theorem (9.7).

Definition 12.8 (Simple Curve) A simple curve is a curve that has no intersec-
tions, save for the beginning and end of the curve (if it is closed).

Definition 12.9 (Residue at Infinity) Suppose f : C \ { z1, · · · , zN } → C holomor-
phic. Let γ be a simple piecewise smooth closed curve which encloses all zi’s in its inside
(ie γ = ∂Ω for some open bounded Ω ⊂ C). Then the residue at ∞ of f is defined to
be:

Res∞ (f) := − 1

2πi

∫
γ
f(z) dz.

This notation (ie the LHS not depending on γ) is fine, as Res∞ (f) does not depend on
the choice of γ provided that γ contains { z1, · · · , zN }. Usually we will let γ = ∂DR(0)
for large R.

z1
z2

z3
γ
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Note 12.10 By theorem (12.6):

Res∞ (f) = −
N∑
i=1

Reszi (f) .

Thus if f : C \ { z1, · · · , zN } → C holomorphic, then:

N∑
i=1

Reszi (f) +Res∞ (f) = 0.

Proposition 12.11 f : C \ { z1, · · · , zN } → C holomorphic. Then:

Res∞ (f) = −Res0

(
1

z2
f

(
1

z

))
.

Proof: Basically just a change of variables, w = 1
z . Take γ = ∂DR(0) and γ̂ = D 1

R
(0).

z 7→ 1
z maps DR(0) to C \D 1

R
(0) and flips the orientation on ∂D.

γ

0 −−−→
w= 1

z

0

γ̂

Say z(t), t ∈ [a, b] is a CCW parameterization of γ. Then w(t) = 1
z(t) , t ∈ [a, b] is a

parameterization of γ̂. Then w′(t) = − 1
z2(t)

z′(t). Thus:

Res∞ (f) = − 1

2πi

∫
γ
f(z) dz = − 1

2πi

∫ b

a
f(z(t))z′(t) dt

=
1

2πi

∫ b

a
f

(
1

w(t)

)
1

w2(t)
w′(t) dt

=
1

2πi

∫
γ̂
f

(
1

w

)
1

w2
dw.

Then noting that 1
w2 f

(
1
w

)
is holomorphic inside γ̂ except possibly at 0:

Res∞ (f) =
1

2πi

∫
γ̂
f

(
1

w

)
1

w2
dw

= −Res0

(
1

w2
f

(
1

w

))
,

with the minus sign coming from the fact that the orientation of γ̂ is negative.
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Example 12.12 Compute: ∫
∂D2(0)

5z − 2

z(z − 1)
dz.

f(z) = 5z−2
z(z−1) is meromorphic in C with simple poles at z = 0 and z = 1. By theorem

(12.6):

∫
∂D2(0)

5z − 2

z(z − 1)
dz = 2πi

(
Res0 (f) +Res1 (f)

)
= −2πiRes∞ (f)

= 2πiRes0

(
1

z2
f

(
1

z

))

= 2πiRes0

(
5− 2z

z(1− z)

)
= 10πi.

12.3 The Open Mapping Theorem

Theorem 12.13 (Open Mapping Theorem) f : Ω→ C holomorphic and non-constant
with Ω open and connected. Then f is an open map, eg ∀U ⊂ Ω open, f(U) ⊂ C is open.

Note 12.14 This is in some way “backwards continuity,” in that if f is invertible, then
f−1 being continuous is equivalent to f being open.

Proof: The idea here is to apply theorem (11.12) and examine the order of vanishing
of the function minus a constant. Given U ⊂ Ω open, z0 ∈ U , let w0 = f(z0). We must
show that ∃ some open neighborhood of w0 which is contained in f(U).

Examine f(z)−w0, a holomorphic function of z, which vanishes at z = z0, but is not
identically 0 since f is not identically constant. z0 is an isolated zero of f(z) − w0 of
order N ≥ 1, thus ∃ ε, δ > 0 s.t. Dδ(z0) ⊂ Ω and

∣∣f(z)− w0

∣∣ > ε > 0 for |z − z0| = δ.

×z0
δ

For w ∈ C let us write:

g(z) = f(z)− w = f(z)− w0 + w0 − w
= F (z) +G(z),with F (z) := f(z)− w0,

and G(z) := w0 − w.
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Note that G(z) is constant since w,w0 are both fixed.
We hope to now use theorem (12.1) to show that

∣∣F (z)∣∣ > ∣∣G(z)∣∣ when |z − z0| = δ.
This is in fact true, since

∣∣F (z)∣∣ = ∣∣f(z)− w0

∣∣ > ε > |w − w0| (letting w sufficiently close
to w0). Thus F and F + G have the same number of zeroes in Dδ(z0). Since F has N
zeroes, F +G = g has N zeroes inside Dδ(z0).

We have thus proved that ∀w sufficiently close to w0, ∃N ≥ 1 roots z1, · · · , zN of
f(z)− w. Thus f(zj) = w, so w ∈ f(U).

Corollary 12.15 (Maximum Modulus Principle v1) Let Ω ⊂ C open and con-
nected, f : Ω → C holomorphic and non-constant. Then |f | cannot obtain a local
maximum at any point in Ω.

Proof: Suppose not. Then |f | obtains a maximum at some z0. Applying theorem
(12.13), ∃D ⊂ Ω disc, z0 ∈ D, s.t. f(z0) ∈ f(D) open.

f(z0)

f(D)

0

Since f(D) is open, we can find some sequence {zi} ∈ D, zi → z0 s.t.
∣∣f(zi)∣∣ > ∣∣f(z0)∣∣.

Since we can find such a sequence, z0 is not a maximum.

Corollary 12.16 (Maximum Modulus Principle v2) Ω ⊂ C open, bounded, and
connected, f : Ω → C holomorphic and continuous up to ∂Ω (ie continuous on Ω).
Then:

sup
Ω
|f | = sup

∂Ω
|f | <∞.

Note 12.17 The boundedness and continuity up to ∂Ω tells us that supΩ|f | = supΩ|f |
which is finite as the sup over a compact set. For the same reason the RHS is also finite.

Proof: By assumption, supΩ|f | < ∞. Since f is continuous up to ∂Ω, supΩ|f | =
supΩ|f | (this is since any point in Ω is a limit of some sequence inside Ω, and the
continuity of f ensures that lim f(xi) = f(limxi)). Clearly supΩ|f | ≥ sup∂Ω|f |, since
Ω ⊃ ∂Ω. It thus suffices to show that supΩ|f | ≤ sup∂Ω|f |.

If this is false then

sup
Ω
|f | > sup

∂Ω
|f | . (12.1)

Then let x ∈ Ω where supΩ|f | is achieved (it is achieved since Ω is compact). By (12.1),
x ∈ Ω, hence |f | has a global maximum in Ω and is thus constant by corollary (12.15),
an absurdity since for a constant function (12.1) makes no sense.
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Recall from last lecture corollary (12.16). In the assumption, we require that Ω is
bounded. We will provide an example where the Maximum Modulus Principle v2 does
not hold when Ω is unbounded.

13.1 Applications of MMP

Counterexample 13.1 Take Ω = quarter plane = { z ∈ C | ℜ(z),ℑ(z) > 0 }. Then
∂Ω = { z ∈ C | ℜ(z) = 0 ∨ ℑ(z) = 0 }.

Ω

∂Ω

Let F (z) = e−iz2 (holomorphic on C thus on Ω as well). It is easy to check that

z ∈ ∂Ω =⇒
∣∣F (z)∣∣ = 1. But letting z = re

iπ
4 ∈ Ω =⇒

∣∣F (z)∣∣ = er
2
which is unbounded

(in particular this is larger than 1). Thus the Maximum Modulus Principle v2 fails.

Example 13.2 Say D = D1(0), f : D → C holomorphic non-constant s.t.
∣∣f(z)∣∣ ≤

1 ∀z ∈ ∂D. We will show that f(D) ⊂ D.
By corollary (12.16), supD|f | = sup∂D|f | ≤ 1. Then f(D) ⊂ D. To prove that

f(D) ⊂ D, let us use corollary (12.15): if this fails, then ∃z0 ∈ D s.t.
∣∣f(z0)∣∣ = 1, thus

|f | achieves a max at z0 and must be constant, which is a contradiction.

13.2 Automorphisms

We turn to the topic of automorphisms – holomorphisms that map to a function’s own
domain.

Theorem 13.3 Let Ω ⊂ C open, f : Ω→ C holomorphic and injective. Then:

1. f(Ω) is open.
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2. f : Ω→ f(Ω) is bijective.

3. f ′(z) ̸= 0 ∀z ∈ Ω.

4. f−1 : f(Ω)→ Ω is holomorphic.

Note 13.4 This does not hold in the real case. Compare point 3 with the function
f(x) = x3. This is a smooth injective function from R to R, but its derivative vanishes
at the origin.

Proof:[13.3]

1. f injective =⇒ f non-constant =⇒ f open map. Thus f(Ω) is open.

2. f is injective, so obviously bijective.

3. f ′ ̸≡ 0 on Ω (if it was, f would be locally constant and thus not injective). Thus
since f ′ is holomorphic and f ′ ̸≡ 0, the zeroes of f are isolated. Let us show that
f ′ is never 0.

Suppose that ∃ z0 s.t. f ′(z0) = 0. Let w0 = f(z0) and Let F (z) = f(z) − w0.
Then F has an isolated zero at z0 (if not isolated, f ≡ w0  ). We have that
F ′(z0) = f ′(z0) = 0, so z0 is a zero of F of order N ≥ 2. For z close to z0,
F ′(z) ̸= 0.

We argue exactly the same as in the proof of the theorem (12.13) and get that
(using theorem (12.1)) for w close to w0, f(z) = w has exactly N solutions close
to z0. But at all such z, f ′(z) ̸= 0, so these are all distinct (since if two coincide,
f at that point has a zero of order at least two, thus f ′ at that point is 0). Since
N ≥ 2, we get that f is not injective (since there are at least two distinct zeroes
of f(z)− w, thus two points that are mapped to w).

Hence f ′ never vanishes on Ω.

4. To show that f−1 is holomorphic, for any w0 ∈ f(Ω), write w0 = f(z0) (uniquely)
and for w near w0, write w = f(z) (uniquely). Then, noting that since z, z0 are
unique and since f−1 is continuous, then as w → w0, z → z0:

lim
w→w0

f−1(w)− f−1(w0)

w − w0
= lim

z→z0

z − z0
f(z)− f(z0)

= lim
z→z0

1
f(z)−f(z0)

z−z0

=
1

f ′(z0)
.

Since this limit exists, f−1 is holomorphic.
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Definition 13.5 (Automorphism) An automorphism of Ω is a function f : Ω →
Ω ⊂ C open, f holomorphic bijection. Note that by theorem (13.3), f−1 is holomorphic
and bijective from Ω to Ω.

Definition 13.6 (Automorphism Group) We define:

Aut(Ω) := { f : Ω→ Ω | f automorphism of Ω } .

This is called the automorphism group of Ω.

Note 13.7 Aut(Ω) has a natural group structure. Indeed:

• Identity is: Id : Ω→ Ω.

• Group law is: f · g = f ◦ g.

• Inverse is: (f)−1 = f−1.

Example 13.8 (Aut(C)) We showed in homework 5 (Stein-Shakarchi, Exercise 3.14)
that f : C → C holomorphic injective =⇒ f = az + b, a, b ∈ C, a ̸= 0. The converse
is true trivially. Functions of the form az + b are also obviously bijective. We conclude
that:

Aut(C) = { az + b | a, b ∈ C, a ̸= 0 } .

Notation 13.9 C∗ := C \ {0}.

Example 13.10 (Aut(C∗)) Aut(C∗) := { f : C∗ → C∗ | f holomorphic and bijective }.
To calculate Aut(C∗), let us look near 0. 0 is an isolated singularity of f , so there are

three cases:

1. 0 is a removable singularity

Thus ∃ f̃ : C → C holomorphic s.t. f̃ |C∗= f . We shall show that necessarily
f̃(0) = 0.

Suppose that f̃(0) = z ̸= 0. Then since f is bijective ∃!w ̸= 0 s.t. f(w) = z = f(0).
Let ε > 0 s.t. Dε(0) ∩Dε(w) = ∅. By theorem (12.13) f̃

(
Dε(0)

)
and f̃

(
Dε(w)

)
are open, and z ∈ f̃

(
Dε(0)

)
∩ f̃

(
Dε(w)

)
. f̃
(
Dε(0)

)
∩ f̃

(
Dε(w)

)
is open and non-

empty, thus ∃z̃ ̸= z, z̃ ∈ f̃
(
Dε(0)

)
∩ f̃

(
Dε(w)

)
. Thus ∃a ̸= 0, a ∈ Dε(0) and

b ̸= 0, b ∈ Dε(w) with a ̸= b s.t. f(a) = f(b) = z̃. This is in contradiction to the
condition that f is injective on C∗. It follows that f̃(0) = 0.

Thus f̃ : C→ C is bijective.

Thus f̃ ∈ Aut(C) with f̃(0) = 0. It follows that f(z) = az, z ̸= 0. Clearly
f(z) = az, a ̸= 0 is an automorphism of C∗.
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2. 0 is a pole

Let g(z) = 1
f(z) . g(z) : C

∗ → C∗ is also bijective and holomorphic as a composition

of two holomorphic bijections. Thus g(z) ∈ Aut(C∗), but since 0 is a pole of f , 0
is a removable singularity of g.

By case 1, g(z) = az, a ̸= 0. It follows that f(z) = 1
az , a ̸= 0. Clearly

f(z) = 1
az , a ̸= 0 is an automorphism of C∗.

3. 0 is an essential singularity

This cannot be. This can be seen by applying theorem (10.13) and theorem (12.13)
to an open neighborhood around 0.

It follows that Aut(C∗) = { f(z) = az or 1
az , a ̸= 0 }.

Much later we will discuss Aut(D), Aut(D∗), and Aut(H) where H is the upper half
plane.

13.3 Riemann Sphere

We turn our attention now to a topic quite different from what we have seen before. We
want to be able to describe the relationship between a sphere and the complex plane.
Intuitively, we would like to take the 1-point compactification C ⊔ {∞} = S2 sphere.

∞

C ←−−−−→

∞ = North Pole

13.3.1 Stereographic Projection

Consider a sphere intersected with a plane. Then given any point P ∈ S2 \ {N} there is
a unique line containing P and N . This line intersects the xy-plane in a point Q.
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N

S

Q

P

Definition 13.11 (Stereographic Projection from N) The map that takes P to Q
is called the stereographic projection from N , denoted by StrN .

Remark 13.12 This is a bijection between S2 \ {N} and R2 = C.

Now taking the stereographic projection from S gives you a different bijection StrS
between S2 \ {S} and R2 = C that takes P to some point R ∈ R2.

N

S

Q

P

R

We want to find a map ϕ : C→ C, Q 7→ R. Consider Q = (x, y, 0) and N = (0, 0, 1).
To find P we parameterize QN by:

t · (0, 0, 1) + (1− t) · (x, y, 0) =
(
(1− t) · x, (1− t) · y, t

)
= γ(t).
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N = (0,0,1)

S = (0,0,−1)

(x,y,0) = Q

P

R

Now P is (one) intersection of γ and S2 such that:

1 =
∣∣γ(t)∣∣2 = (1− t)2x2 + (1− t)2y2 + t2

(letting A := x2 + y2) = t2(A+ 1)− 2At+A.

This is quadratic in t. Thus:

t =
A±

√
A2 − (A2 − 1)

A+ 1

(ignore t = 1; this is N) =
A− 1

A+ 1
.

Thus, with (1− t) = 2
A+1 :

P =

(
2x

x2 + y2 + 1︸ ︷︷ ︸
X

,
2y

x2 + y2 + 1︸ ︷︷ ︸
Y

,
x2 + y2 − 1

x2 + y2 + 1︸ ︷︷ ︸
Z

)

= (X, Y, Z) .

Now take γ̃ = SP =
(
(1 − t) · X, (1 − t) ·Y, (1 − t) · Z − t

)
. R is the intersection of

γ̃ and the xy-plane. Thus t = Z
Z+1 and 1 − t = 1

Z+1 . It follows (after some arithmetic)
that:

R =

(
X

Z+ 1
,

Y

Z+ 1
, 0

)
=

(
x

x2 + y2
,

y

x2 + y2
, 0

)
.

So ϕ = StrS ◦ (StrN )−1 maps Q = (x, y, 0) to R =
(

x
x2+y2

, y
x2+y2

, 0
)
. Now we can
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think of Q,R as elements of R2 = C:

Q = z = x+ iy

R =
x

x2 + y2
+ i

y

x2 + y2

=
z

x2 + y2

=
z

|z|2

=
1

z
.

If we compose one of the two projections with z, we get that to obtain S2 you can
take two copies of C and glue them on C∗ ⊂ C via the map z 7→ 1

z .

1
z

0 1
z

z 0 = “∞” z

C

C

Remark 13.13 Those familiar with manifolds will recognize this as one of the more
popular choices of atlases with two charts for the 2-dimensional manifold S2, where
z ←→ 1

z is the transition between the two charts. Following what one might think in this
framework, we use this chart and transition map structure to properly define functions
on S2.

We can use this to define holomorphic functions to and from S2.

Definition 13.14 (Holomorphisms from S2 to C) Consider f : S2 → C a map of
sets. f is called holomorphic if on U1, f ◦ StrN : C → C is holomorphic and on U2,
f ◦ StrS : C→ C is holomorphic.
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14.1 Riemann Sphere Continued

Let S2 = { (X,Y,Z) | X2 +Y2 + Z2 = 1 } ⊂ R3 be the unit sphere centered at 0. Last
lecture we talked about the stereographic projection fromN = (0, 0, 1) and S = (0, 0,−1).
Let U1 = S2 \ {(0, 0, 1)} and U2 = S2 \ {(0, 0,−1)}. These are both open subsets of S2.

N = (0,0,1)

S = (0,0,−1)

(x,y,0) = Q
P

R

Define ϕ1 : U1 → C, P 7→ Q to be the stereographic projection from N . We showed
last time that:

ϕ1(X,Y,Z) =
X

1− Z
+ i

Y

1− Z
.

ϕ−1
1 (x+ iy) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

Define ϕ2 : U2 → C, P 7→ R to be the stereographic projection from S composed with
complex conjugation. Then:

ϕ2(X,Y,Z) =
X

1 + Z
− i Y

1 + Z
.

U1 ∩ U2 = S2 \ {N,S }. It is clear that ϕ1(U1 ∩ U2) = ϕ2(U1 ∩ U2) = C∗. We showed
in the last lecture that:

ϕ2 ◦ ϕ−1
1 : C∗ → C∗,

z 7→ 1

z
.

Note 14.1 (If you know about manifolds already) { (U1, ϕ1), (U2, ϕ2) } is an at-
las for S2 as a Riemann surface, since ϕ2 ◦ ϕ−1

1 (z) = 1
z is holomorphic.
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14.1.1 Holomorphic Maps on S2

We now want to define the concept of holomorphic maps from and to S2.

Definition 14.2 (Holomorphic Functions from S2 to C) Ω ∈ S2 open (can be S2

itself). Let f : Ω→ C a map of sets. We say that f is holomorphic if on ϕ1(U1∩Ω) ⊂
C open, F1 := f ◦ ϕ−1

1 : ϕ1(U1 ∩Ω)→ C is holomorphic and if on ϕ2(U2 ∩Ω) ⊂ C open,
F2 := f ◦ ϕ−1

2 : ϕ2(U2 ∩ Ω)→ C is holomorphic.

Equivalently, f is holomorphic if I have F1 holomorphic on Ω̃ ⊂ C holomorphic and

F2 = f ◦ϕ−1
2 = F ◦ϕ1◦ϕ−1

2 = F
(
1
z

)
is holomorphic near 0 (if Ω̃ contains a neighborhood

of ∞).

×

×

×
×

f

z 7→ 1
z

ϕ1 ϕ2 F2

F1 C

Definition 14.3 (Holomorphic Functions from C to S2) If Ω ⊂ C open, f : Ω →
S2 a map of sets, we say that f is holomorphic if both ϕ1◦f : Ω→ C and ϕ2◦f : Ω→ C
are holomorphic.

Equivalently, F = ϕ1 ◦ f holomorphic and ϕ2 ◦ f = ϕ2 ◦ ϕ−1
1 ◦ F = 1

F holomorphic on
Ω ∩ {F ̸= 0 } ie F has only poles, where poles = f−1(north pole) = f−1(“∞”).
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×

×

ϕ1

ϕ2

ϕ1 ◦ f

ϕ2 ◦ f

f

S2

C

Definition 14.4 (Holomorphic Functions from S2 to S2) Ω ⊂ S2 open, f : Ω →
S2 a map of sets. f is holomorphic if:

ϕ1 ◦ f ◦ ϕ−1
1 : ϕ1 (U1 ∩ U1)→ ϕ1 (U1 ∩ U1) ,

ϕ1 ◦ f ◦ ϕ−1
2 : ϕ2 (U1 ∩ U2)→ ϕ1 (U1 ∩ U2) ,

ϕ2 ◦ f ◦ ϕ−1
1 : ϕ1 (U2 ∩ U1)→ ϕ2 (U2 ∩ U1) ,

ϕ2 ◦ f ◦ ϕ−1
2 : ϕ2 (U2 ∩ U2)→ ϕ2 (U2 ∩ U2) ,

are all holomorphic.
Equivalently, letting F = ϕ1 ◦ f ◦ ϕ−1

1 then f holomorphic as a map S2 → S2 if:

• F holomorphic,

• f : z 7→ ∞ then F has a pole at z,

• f :∞ 7→ z then F holomorphic at ∞,

• f :∞ 7→ ∞ then F has a pole at ∞.
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f

ϕ1 ϕ2 ϕ1 ϕ2

Remark 14.5 It follows that f : S2 → S2 holomorphic ⇐⇒ F = ϕ1 ◦ f ◦ ϕ−1
1

meromorphic in C and meromorphic at ∞. By theorem (11.8) this is equivalent to
F being a rational function ie F is the ratio of two complex polynomials.

Exercise 14.6 Compute Aut(S2). That is to say, characterize the bijective holomorphic
maps from S2 to S2.

14.2 Homotopy and Contour Integrals

Homotopies are often discussed in an introduction to algebraic topology. We will give a
simple-minded yet perfectly rigorous introduction to homotopies.

A homotopy is in a sense a “continuous family of continuous paths.” This must be
defined, but in our treatment we will insist on having piecewise smooth paths. Say γ0, γ1
are two piecewise smooth curves in C. Up to reparameterization we may assume that
both are parameterized by the same interval t ∈ [a, b] ⊂ R. Assume that γ0(a) = γ1(a) =
z0 and γ0(b) = γ1(b) = z1.

z0 z1

γ1

γ0

Definition 14.7 (Homotopic Curves) Suppose that γ0, γ1 ⊂ Ω are two such curves.
We say that γ0 and γ1 are homotopic in Ω if ∃F : [0, 1]× [a, b]→ Ω continuous such
that:
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1. ∀s ∈ [0, 1], γ̃s(t) := F (s, t) is a piecewise smooth curve γ̃s : [a, b]→ Ω,

2. γ̃0 = F (0, t) ≡ γ0 and γ̃1 = F (1, t) ≡ γ1,

3. γ̃s(a) = z0 and γ̃s(b) = z1 ∀s ∈ [0, 1].

z0 z1

γ1

γs

γ0

We can think of γ̃s as an interpolating family of piecewise smooth curves with similar
beginning and ending points which “vary continuously in S”, where the “continuous
variation” is encoded in the condition that F is continuous.

Counterexample 14.8 (Moral Counterexample) Let Ω = C∗.

−1 10

γ1

γ0

These two curves should not be homotopic in Ω, since F must map into Ω.

Proposition 14.9 (Homotopy Invariance of Contour Integrals) Ω ⊂ C open, f :

Ω → C holomorphic, γ0, γ1 : [a, b] → Ω piecewise smooth curves that are homotopic in
Ω. Then: ∫

γ0

f(z) dz =

∫
γ1

f(z) dz.
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Example 14.10 Consider the unit circle in Ω = C∗.

γ1

γ0

0

Then γ0 and γ1 are not homotopic by the above proposition as if they were, letting
f(z) = 1

z : ∫
γ0

1

z
dz −

∫
γ1

1

z
dz = 0,

but we already know that:∫
γ0

1

z
dz −

∫
γ1

1

z
dz =

∫
∂D1(0)

1

z
dz = 2πi.

It follows that γ0 and γ1 are not homotopic.

Proof:[14.9] Let F be a homotopy between γ0 and γ1 in Ω. let K = F ([0, 1]× [a, b]) ⊂
Ω. [0, 1]× [a, b] is compact and F is continuous, so K is compact.
Since K is compact and Ω is open, ∃ε > 0 such that ∀z ∈ K, D3ε(z) ⊂ Ω (ie thickening

K by 3ε still lies in Ω). Also, since F is continuous and [0, 1] × [a, b] is compact, then
F is uniformly continuous on [0, 1] × [a, b]. Thus ∃δ > 0 s.t. for any s1, s2 ∈ [0, 1] with
|s1 − s2| < δ we have supt∈[a,b]

∣∣γs1(t)− γs2(t)∣∣ < ε.
This means that γs1 and γs2 lie within distance epsilon of each other (for s1, s2 suffi-

ciently small):

ε
γs1

γs2

Fix any such s1, s2. We choose disks of radius 2ε: D0, · · · , Dn, n large, which cover
γs1 ∪ γs2 :

D0

D1
Dn

γs1

γs22ε
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We choose consecutive points on each curve:

{ z0 = γs1(a), z1, · · · , zn+1 = γs1(b) } on γs1 ,
{w0 = γs2(a), w1, · · · , wn+1 = γs2(b) } on γs2 ,

such that zi, zi+1, wi, wi+1 ∈ Di, i ∈ { 0, · · · , n }.

D0

z0
w0

z1

w1

D1

z2

w2

zn

wn

Dn

zn+1

wn+1

γs1

γs22ε

On each disk Di let Fi be an antiderivative of f . Then on Di ∩ Di+1 we have Fi

and Fi+1 as antiderivatives of f . These must differ from each other by a constant ie.
Fi+1 = Fi + ci on Di ∩Di+1 for some ci ∈ C. Thus:

Fi+1(zi+1)− Fi(zi+1) = Fi+1(wi+1)− Fi(wi+1) = 0.

⇓
Fi+1(zi+1)− Fi+1(wi+1) = Fi(zi+1)− Fi(wi+1).

Thus:∫
γs1

f(z) dz −
∫
γs2

f(z) dz
FTC

=
n∑

i=0

[
Fi(zi+1)− Fi(zi)

]
−

n∑
i=0

[
Fi(wi+1)− Fi(wi)

]
=

n∑
i=0

[(
Fi(zi+1)− Fi(wi+1)

)
−
(
Fi(zi)− Fi(wi)

)]
=

n∑
i=0

[(
Fi+1(zi+1)− Fi+1(wi+1)

)
−
(
Fi(zi)− Fi(wi)

)]
(telescopic sum) =

(
Fn(zn+1)− Fn(wn+1)

)
−
(
F0(z0)− F0(w0)

)
= 0− 0

= 0.

Thus we have proved that with s1, s2 ∈ [0, 1] and |s1 − s2| < δ:∫
γs1

f(z) dz =

∫
γs2

f(z) dz.
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z0 z1

γ1

γ0

Let then s1 = 0, s2 small, then repeat finitely many times (around 1
δ times) until you

get to s2 = 1.

Definition 14.11 (Simply Connected) Ω ⊂ C open subset shall be called simply
connected if Ω is connected and every two γ1, γ2 piecewise smooth curves in Ω with
same initial and end points are homotopic in Ω.

Corollary 14.12 f : Ω→ C holomorphic and Ω simply connected. Then ∀, γ piecewise
smooth closed curve in Ω: ∫

γ
f(z) dz = 0.

Proof:
Pick any point on the curve γ(c), with c ∈ (a, b). Let:

γ1 = γ |[0,c]
−γ2 = γ |[c,b]
⇒ γ = γ1 ∪ (−γ2).

Where −γ2 is just a reverse orientation.
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γ2

γ1

Then: ∫
γ
f(z) dz =

∫
γ1

f(z) dz −
∫
γ2

f(z) dz = 0.

Remark 14.13 This is not the same as Cauchy, though similar. This is different be-
cause in this corollary, Ω is assumed to be simply connected, but γ is not assumed to be
γ = ∂Ω′, Ω′ ⊂⊂ Ω.
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Lecture 15: October 22

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

Recall from last lecture our discussion on homotopies. Recall the last corollary – the
integral over any close curve in a simply connected domain evaluates to 0.

15.1 Convex Sets

We now cover some examples of this corollary.

Definition 15.1 (Convex Sets) Ω ⊂ C is called convex if ∀x, y ∈ Ω, the line xy lies
in Ω.

An example of a convex shape and a non-convex shape.

Proposition 15.2 Ω ⊂ C open and convex =⇒ Ω simply connected.

Proof: Let Ω ⊂ C be open and convex.

1. Ω convex =⇒ Ω connected.

This is since connected is the same as path-connected for open sets in the plane.
Path-connected is obviously implied by convex.

2. Let γ0, γ1 two piecewise smooth curves in Ω with the same initial and end points,
without loss of generality characterized on [a, b]. Then let γs(t) := (1 − s)γ0(t) +
sγ1(t), s ∈ [0, 1]. This is a continuous function in s and t, as a linear combination
of products of continuous functions.
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Ω

γ1

γ0

Note that fixing s = s0, the line from γ0(s0) to γ1(s0) is contained in Ω by the
convexity of Ω. This implies that γs ⊂ Ω for any s.

Thus these two curves are homotopic.

Example 15.3 We present some examples of open sets that are convex, and thus simply
connected:

1. Ω = C.

2. Ω = Dr(z0) for any r > 0, z0 ∈ C.

3. Ω = H = { z ∈ C | ℑ(z) > 0 }.

A useful generalization of convex set are so-called “star-shaped” sets.

Definition 15.4 (Star-Shaped Sets) We call Ω star-shaped if ∃z0 ∈ C s.t. ∀z ∈ Ω,
the unique line segment joining z and z0 lies in Ω.

z0

Remark 15.5 Ω ⊂ C open and star-shaped. Then ∃z0 ∈ Ω s.t. ∀z ∈ Ω, zz0 ⊂ Ω. Note
that z = z0 + reiθ for the unique r = |z − z0| and some unique θ. Parameterize zz0 by
γ = z0 + seiθ, s ∈ [0, r].

Given two paths γ0(t), γ1(t) in Ω, write:

γ0(t) = z0 + r0(t)e
iθ0(t)

γ1(t) = z0 + r1(t)e
iθ1(t)

⇓

γs(t) = s0 +
(
(1− s)r0(t) + sr1(t)

)
ei
(
(1−s)θ0(t)+sθ1(t)

)
.
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We may assume that γ0 and γ1 don’t pass through z0 (no proof is given of this fact).
Then γs is a homotopy between γ0 and γ1 in Ω.

Example 15.6 (Slit Plane) Let γ be a ray (a closed half-line). Then C \ γ is a slit
plane. Up to translation and rotation, we may assume that the slit plane is C\{ (−∞, 0] }.
This set is star-shaped with respect to the origin, and thus simply connected (but not
convex).

Counterexample 15.7 C∗ is not simply connected, as was seen last lecture. Similarly
Dr(z0)\{z0} is not simply connected. Similarly any domain with finitely many punctures
is not simply connected. Similarly domains with holes that are not just points (such as
annuli) are not simply connected.

Note 15.8 Intuitively, a domain with holes is not simply connected, and a domain with
no holes is simply connected. This requires algebraic topology beyond the scope of this
class to prove.

15.1.1 Characterization of Simply Connected Sets

Theorem 15.9 Ω ⊂ C open and connected, f holomorphic on Ω. Then the following
are equivalent:

1. f has an antiderivative on Ω.

2.
∫
γ f(z) dz = 0 ∀ γ ⊂ Ω piecewise smooth closed curve.

3.
∫
γ0
f(z) dz =

∫
γ1
f(z) dz ∀ γ0, γ1 ⊂ Ω piecewise smooth curves with same initial

and end points.

Furthermore:

4. Ω simply connected

implies statements 1, 2, and 3.

Remark 15.10 In fact, in the above theorem, statement 1 holding true for all f holo-
morphic in Ω implies statement 4. We will not prove this yet – it can be proven now
using some difficult algebraic topology, but the standard approach in this course is to
prove it as a corollary of the Riemann Mapping Theorem (theorem (18.11)).

Proof:[15.9]

(4)⇒ (2) : Already done in corollary (14.12).

(1)⇒ (2) : By theorem (3.5):
∫
γ f(z) dz = F (γ(b))− F (γ(a)) = F (γ(a))− F (γ(a)) = 0.
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(2)⇒ (3) : Given γ0, γ1, let γ = γ0 ∪ −γ1. Then γ is piecewise smooth and closed. By (2):

0 =

∫
γ
f(z) dz =

∫
γ0

f(z) dz −
∫
γ1

f(z) dz.

⇓∫
γ0

f(z) dz =

∫
γ1

f(z) dz.

(3)⇒ (1) : We must construct F an antiderivative for f . Fix z0 ∈ Ω. Given z ∈ Ω, since Ω is
connected we can let γ : [a, b]→ Ω piecewise smooth with γ(a) = z0 and γ(b) = z.

Ω

z0

z

γ

Define F (z) :=
∫
γ f(w) dw. Note that the LHS doesn’t depend on γ, since by

(2) different γ yield the same value. Thus this formula above defines a functions
F : Ω→ C.
We claim that F is an antiderivative for f on Ω, ie that F is holomorphic and
F ′(z) = f(z) ∀z ∈ Ω. Then, with h small such that D|h|(z) ⊂⊂ Ω, and letting σ be
a path from z0 to z + h:

Ω

z0

z

z + h

γ

σ
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F (z + h)− F (z) =
∫
σ
f(w) dw −

∫
γ
f(w) dw

=

∫
σ∪(−γ)

f(w) dw

=

∫
Lz+h
z

f(w) dw.

Recalling that Lz+h
z is the line from z to z + h.

Ω

z0

z

z + h

τ

Lz+h
z

Thus, remembering that 1
h

∫
Lz+h
z

f(w) dw = f(z) (this was shown in the proof of
theorem (4.2)):

F (z + h)− F (z)
h

=
1

h

∫
Lz+h
z

f(w) dw

= f(z).

And we are done, since we have found an antiderivative of f on Ω.

15.2 Complex Logarithm

We now turn our attention to the question of the complex logarithm. We discovered
that there are infinitely many solutions which differ by 2πik, k ∈ Z.

Theorem 15.11 Ω ⊂ C open and simply connected, with 0 ̸∈ Ω, then ∃F : Ω → C
holomorphic (called a branch of the complex logarithm on Ω) such that:

eF (z) = z ∀z ∈ Ω.

Furthermore, this F is unique up to adding 2πik, k ∈ Z. That is to say that two
different branches differ by an integer multiple of 2πi.
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Proof: Let f(z) = 1
z . This is holomorphic in Ω since 0 ̸∈ Ω. Ω is simply connected –

by theorem (15.9) there exists an antiderivative F (z) on Ω. Note that we can add any
complex number to F and still get an acceptable antiderivative. Then:(

ze−F (z)
)′

= e−F (z) − zF ′(z)e−F (z)

(since F ′(z) = 1/z) = 0.

⇓
ze−F (z) = z0 ∈ C, z0 ̸= 0.

Thus, eF (z) = z
z0
, ∀z ∈ Ω. Since z0 ̸= 0, we can pick w0 ∈ C s.t. ew0 = z0. Then let

F̃ (z) = F (z) + w0. Then:

eF̃ (z) = eF (z) · ew0 = z.

Now assume that F1, F2 are two holomorphic functions on Ω which satisfy eFi(z) = z.
Then:

eF1(z)−F2(z) = 1.

It follows that, since { z | ez = 1 } = { 2πik | k ∈ Z }, that:

F1(z)− F2(z) = 2πik(z).

However the LHS is continuous, so the RHS is too. Since Z is disconnected, it follows
that k(z) is constant. Thus, for some k ∈ Z:

F1(z)− F2(z) = 2πik.

Remark 15.12 In theorem (15.11), if furthermore 1 ∈ Ω, then letting z0 = 1 in the
above proof, and adding a constant to F such that F (1) = 0 we get that ze−F (z) = z0.
evaluating now at z = 1, we get z0 = 1. Thus F̃ = F and F̃ (1) = 0.

This is called the principal branch of log, denoted by log(z), with the property that
log(1) = 0.
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Instructor: Valentino Tosatti Scribe: Alexander Kroitor

Recall the discussion of the complex logarithm from last lecture.

16.1 Complex Logarithm Continued

Remark 16.1 In theorem (15.11) from last time, note that we did not actually need
simply connected. All we needed was the existence of an antiderivative. It thus suffices
to assume any of items 1,2,3 in theorem (15.9). That is to say, it suffices to assume the
existence of an antiderivative F of f holomorphic on Ω.

Assume now that 0 ̸∈ Ω simply connected, 1 ∈ Ω. Let log(z) be the principal branch
of log, ie log(1) = 0. Then, consider r ∈ R, r close to 1 (suffices that the segment from
1 to r is contained in Ω):

1 r

Ω

Then take γ = [1, r] (or [r, 1] if r < 1). Then:

log(r)︸ ︷︷ ︸
complex

=

∫ r

1

dx

x
= ln(r)︸ ︷︷ ︸

real

Thus the principal branch agrees with the usual natural logarithm on the real axis
close to 1. Additionally, we can write down the power series of log(1+ z) for z ∈ Ω close
to 0 as:

log(1 + z) =
∞∑
n=1

(−1)n+1 z
n

n
.

Indeed, this power series has a radius of convergence of 1. Thus the power series:

G(z) =
∞∑
n=1

(−1)n+1 z
n

n
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defines a holomorphic function on D1(0), with

G(0) = 0,

G′(z) =

∞∑
n=1

(−1)n+1zn−1 =

∞∑
n=0

(−1)nzn =
1

1 + z
.

Thus G is also a branch of log(1 + z) and they agree at z = 0, so they are equal by
the uniqueness of log.

Example 16.2 Let Ω = C\{ (−∞, 0] }. Then 0 ̸∈ Ω, 1 ∈ Ω, and Ω is simply connected.
Thus there is a principal branch of log(z) on Ω. To find log(z), we take any path γ from
1 to z inside Ω and let log(z) =

∫
γ

1
w dw. This satisfies log(1) = 0. We construct γ by

drawing a path γ1 from 1 to |z| and letting γ2 be the arc of radius |z| centered around the
origin that connects |z| and z. We parameterize γ2 by γ2(t) = |z| eit, t ∈ [0, arg(z)], with∣∣arg(z)∣∣ < π:

1 r = |z| > 0

z

γ

Then: ∫
γ

1

w
dw =

∫
γ1

dw

w
+

∫
γ2

dw

w

=

∫ |z|

1

dx

x
+

∫
γ2

dw

w

= log(|z|) +
∫ arg(z)

0

i|z| eit

|z| eit
dt

= log(|z|) + i · arg(z).

It follows that the principal branch on the slit plane is:

log(z) = log(|z|) + i · arg(z).

Note however that unlike the real equivalent, log(z1z2) ̸= log(z1) + log(z2). This can

be seen by letting z1 = z2 = e
2πi
3 . Then z1z2 = e

4πi
3 . However, it is a condition that∣∣arg(z)∣∣ < π, thus we must pick z1z2 = e

−2πi
3 . Then:

2πi

3
· 2πi

3
= log(z1) log(z2) ̸= log(z1z2) = log

(
e−

2πi
3

)
=
−2πi
3
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16.1.1 Logarithm of Functions

We can further generalize the log function to be able to take the logarithm of functions,
not just complex numbers.

Theorem 16.3 Let Ω be simply connected, f : Ω→ C holomorphic and f(z) ̸= 0, ∀z ∈
Ω. Then ∃g : Ω → C holomorphic s.t. eg(z) = f(z), ∀z ∈ Ω. This g is unique up to
adding 2πik, k ∈ Z.

Proof: Proof is left largely as an exercise to the reader. The idea of the proof is to

replace
∫
γ

1
z dz with

∫
γ

f ′(z)
f(z) dz.

16.2 Mean Value Property

First we formally present a preliminary result:

Proposition 16.4 f : DR(z0)→ C holomorphic, R > 0, z0 ∈ C, with

f(z) =
∞∑
n=0

an(z − z0)n.

Then ∀ 0 < r < R, ∀n ≥ 0:

an =
1

2πrn

∫ 2π

0
f(z0 + reiθ)e−inθ dθ,

and ∀ 0 < r < R, ∀n < 0:

1

2πrn

∫ 2π

0
f(z0 + reiθ)e−inθ dθ = 0.

Proof: This is an easy consequence of equation (5.1):

an =
1

2πi

∫
∂Dr(z0)

f(w)

(w − z0)n+1
dw.

Parameterizing ∂Dr(z0) as w(θ) = z0 + reiθ, 0 ≤ θ ≤ 2π:

an =
1

2πi

∫ 2π

0

f(z0 + reiθ)

(reiθ)n+1
rieiθ dθ

=
1

2πrn

∫ 2π

0
f(z0 + reiθ)e−inθ dθ.
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Then let n < 0⇔ n ≤ 1. Then f(w)(w− z0)−(n+1) is holomorphic since f is holomor-
phic in the whole disk. Thus:

an =
1

2πrn

∫ 2π

0
f(z0 + reiθ)e−inθ dθ

=
1

2πi

∫
∂Dr(z0)

f(w)

(w − z0)n+1
dw

= 0.

Note 16.5 If we let r = 1, then f(z0 + eiθ) is f restricted to S1 = D1(0), and an =
1
2π

∫ 2π
0 f(z0 + eiθ)e−inθ dθ is known as the n-th Fourier coefficient of f restricted to S1.

Corollary 16.6 (Mean Value Property) Let f = u + iv holomorphic on DR(z0).
Then ∀ 0 < r < R, we have:

f(z0) =
1

2π

∫ 2π

0
f(z0 + reiθ) dθ.

Furthermore, for the harmonic function u = ℜ(f):

u(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ) dθ.

That is to say that the value of f at the center of any disk (on which f is holomorphic
up to the boundary) is equal to the average value of f restricted to the boundary of the
same disk.

Proof: In proposition (16.4) let z = z0. Then f(z0) = a0 = 1
2π

∫ 2π
0 f(z0 + reiθ) dθ.

The second statement follows by taking the real part of each side of the first equation.

Remark 16.7 It turns out that for any harmonic function on a disk, it is the real part
of some holomorphic function on the disk. Thus this corollary holds for every harmonic
function, not just the real parts of holomorphic functions.

We now begin a separate section, with the ultimate goal of proving theorem (18.11).

16.3 Upper Half Plane

Definition 16.8 (Upper Half Plane) We define the upper half plane to be H :=
{ z ∈ C | ℑ(z) > 0 }.
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Definition 16.9 (Biholomorphisms) Let f : Ω1 → Ω2, Ω1,Ω2 open, be a holomor-
phic and bijective map. We say that f is biholomorphic, and that f is a biholomor-
phism between Ω1 and Ω2.

Proposition 16.10 There is a biholomorphic map F : H→ D = D1(0). In fact:

F (z) =
i− z
i+ z

,

F−1(z) = i · 1− z
1 + z

.

F

F−1

Proof: F : H → C holomorphic is clear, since the denominator is never 0 (since we
are restricted to the upper half plane). Then write z = x+ iy, y > 0. Then note that:

|1− z| =
∣∣x+ i(y − 1)

∣∣
=
√
x2 + (y − 1)2

=
√
x2 + y2 − 2y + 1,

|i+ z| =
∣∣x+ i(y + 1)

∣∣
=
√
z2 + y2 + 2y + 1.

⇓
|1− z| < |i+ z| .

It follows that
∣∣F (z)∣∣ < 1, so F : H → D. To check that F is holomorphic, we check

that F−1 is holomorphic and in fact the inverse of F .
F−1 : D → C holomorphic is clear. Let z = x + iy, z ∈ D ⇔ x2 + y2 = 1. Then we
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examine ℑ(F−1) (if this is positive, F−1 : D → H):

ℑ
(
F−1(z)

)
= ℑ

(
i · 1− z

1 + z

)
= ℜ

(
1− z
1 + z

)
= ℜ

(
1− x− iy
1 + x+ iy

)
(mult. and div. by conj.) = ℜ

(
(1− x− iy)(1 + x− iy)

(1 + x)2 + y2

)
= ℜ

(
1− x2 − y2 − 2iy

(1 + x)2 + y2

)

=
1− x2 − y2

(1 + x)2 + y2
> 0.

Thus F−1 maps to H. Then (with some short yet tiresome arithmetic) one can show
that:

F
(
F−1(z)

)
= F−1

(
F (z)

)
= z.

It follows that F is bijective.
F and F−1 are both rational functions, but are a special type, and both examples of

fractional linear transformations.

Definition 16.11 (Fractional Linear Transformations) A fractional linear trans-
formation is a rational function with z 7→ az+b

cz+d , a, b, c, d ∈ C.

We present an important example of fractional linear transformations:

Definition 16.12 (Möbius Transformations) Let D = D1(0), α ∈ D. Define, with
z ∈ D:

ψα(z) :=
α− z
1− αz

.

These are collectively called Möbius Transformations.

Proposition 16.13 Let α ∈ D. Then ψα ∈ Aut(D). That is to say that ψα is biholo-
morphic.

Proof: Since |α| < 1, if |z| ≤ 1 then:

|1− αz| ≥ 1−|αz| > 0.

Thus the denominator of ψα does not vanish on D, thus ψα is holomorphic on D,
ψα : D → C.
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Observe that:

ψα(0) = α,ψα(α) = 0.

Consider z ∈ ∂D (so |z| = 1). Then z = eiθ:

∣∣∣ψα(e
iθ)
∣∣∣ = ∣∣∣∣∣ α− eiθ1− αeiθ

∣∣∣∣∣
=

∣∣∣∣∣ α− eiθ

eiθ(e−iθ − α

∣∣∣∣∣
=

∣∣∣∣∣ α− eiθα− e−iθ

∣∣∣∣∣
=

∣∣∣α− eiθ∣∣∣∣∣∣α− eiθ∣∣∣ = 1.

Thus:

• ψα maps ∂D into ∂D (ie
∣∣ψα(z)

∣∣ = 1 whenever |z| = 1),

• ψα : D → C holomorphic,

• ψα is non-constant.

We can thus apply example (13.2) to get that ψα(D) ⊂ D. We now want to show
that ψα is bijective by finding an inverse. Since ψα maps 0 to α and α to 0, our natural
guess is that ψ−1

α = ψα. Checking this:

ψα

(
ψα(z)

)
=

α− α−z
1−αz

1− α α−z
1−αz

=
z(1−|α|2)
1−|α|2

= z.

Thus ψα is its own inverse, hence ψα is bijective. Thus ψα ∈ Aut(D)

Remark 16.14 Note that rotations, namely z 7→ eiθz, are elements of Aut(D). By
composition we get that z 7→ eiθ α−z

1−αz are elements of Aut(D).
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Lecture 17: October 29

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

Today we will discuss rational linear functions in more depth. Recall that last class we
ended with a discussion on ψα, the Möbius functions, finding that z 7→ eiθψα = eiθ α−z

1−αz
are elements of Aut(D). We will prove that every element of Aut(D) is of this form,
first starting with an important theorem.

17.1 Automorphisms of D

Theorem 17.1 (Schwarz Lemma) Let D = D1(0) ⊂ C and f : D → D holomorphic
such that f(0) = 0. Then:

1.
∣∣f(z)∣∣ ≤|z|.

2. if
∣∣f(z0)∣∣ = |z0| for some z0 ∈ D \ {0}, then f(z) = λz for some λ ∈ C s.t. |λ| = 1

(ie f is a rotation).

3.
∣∣f ′(0)∣∣ ≤ 1.

4. if
∣∣f ′(0)∣∣ = 1, then f is a rotation.

Proof: Note that by assumption,
∣∣f(z)∣∣ < 1 ∀z ∈ D.

1. Consider g(z) := f(z)
z . g is holomorphic on D \ {0}. Thus g has an isolated

singularity at 0. We expand f (noting that a0 = 0 since f(0) = 0):

f(z) =
∞∑
n=1

anz
n,

g(z) =

∞∑
n=1

anz
n−1 =

∞∑
n=0

an−1z
n.

This is the Laurent series of g on D \ {0}, which has no negative powers of z. This
implies that 0 is a removable singularity for g. Thus g extends to a holomorphic
function on D, still called g : D → C.
For any z ∈ D \ {0}, recalling that

∣∣f(z)∣∣ < 1, and letting |z| = r, we observe that:

∣∣g(z)∣∣ = ∣∣∣∣f(z)z
∣∣∣∣ =

∣∣f(z)∣∣
r

<
1

r.

=⇒ sup
0<r<1

∣∣g(z)∣∣ < 1

r
.
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Corollary (12.16) tells us that:

sup
|z|≤r

∣∣g(z)∣∣ < 1

r
.

Now letting r → 1:

sup
z∈D

∣∣g(z)∣∣ ≤ 1,

ie ∀z ∈ D,
∣∣g(z)∣∣ = ∣∣∣f(z)z

∣∣∣ ≤ 1. Thus
∣∣f(z)∣∣ ≤|z|.

2. Suppose now that
∣∣∣f(z0)z0

∣∣∣ = 1 for some z0 ∈ D \ {0}. Then z0 is a local max for∣∣g(z)∣∣ on D. By corollary (12.15) we get that g is constant. That is to say that for
some λ ∈ C, g(z) = λ. Then 1 =

∣∣g(z0)∣∣ = |λ|. Thus f(z) = λz with |λ| = 1.

3. Now we note that:

g(0) = lim
z→0

g(z) = lim
z→0

f(z)

z
= lim

z→0

f(z)− f(0)
z − 0

= f ′(0) = a1.

Then
∣∣f ′(0)∣∣ = ∣∣g(0)∣∣ ≤ 1.

4. Let
∣∣f ′(0)∣∣ = 1 =

∣∣g(0)∣∣. Then |g| achieves a local max at z = 0. Similar to the
proof of statement 2, it follows that f is a rotation.

We can now prove that Aut(D) is exactly comprised of compositions of rotations and
Möbius functions as a corollary to theorem (17.1).

Corollary 17.2 Let f ∈ Aut(D). Then ∃θ ∈ R, ∃α ∈ D s.t.:

f(z) = eiθ
α− z
1− αz

.

Proof: Let f ∈ Aut(D). By assumption, f is bijective. Thus ∃!α ∈ D s.t. f(α) = 0.
Let g := f ◦ ψα. Then g ∈ Aut(D) and g(0) = 0. Note that since g is bijective, then
g−1 : D → D is biholomorphic with g−1(0) = 0.
We then apply the Schwarz Lemma to g and g−1 to get that:∣∣g(z)∣∣ ≤|z| , z ∈ D,

|g−1(w)| ≤|w| , w ∈ D.

Letting w = g(z) we get that ∀z ∈ D:

|z| =
∣∣∣g−1

(
g(z)

)∣∣∣ ≤ ∣∣g(z)∣∣ ≤|z| ,
⇓∣∣g(z)∣∣ = |z| .
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Thus g satisfies the condition in the second statement of theorem (17.1) and is thus
a rotation. That is to say that g(z) = eiθz for some θ ∈ R. Thus we have shown that
f
(
ψα(z)

)
= (f ◦ ψα) (z) = eiθz. Letting z = ψα(w) for any w ∈ D, we get that:

f(w) = f
(
ψα

(
ψα(w)

))
= eiθψα(w).

And we are done.
We now turn our attention to finding Aut(H).

17.2 Classifying Aut(H)

Recall that we found a biholomorphic map F : H→ D with:

F (z) =
i− z
i+ z

,

F−1(z) = i · 1− z
1 + z

.

Say now that f ∈ Aut(H). This, along with F and F−1, can be visualized with a
commutative diagram:

H D

H D

F

f
F−1

F◦f◦F−1

F

Then since f, F, F−1 are all biholomorphisms, F ◦ f ◦ F−1 : D → D is a biholomor-
phism. That is to say that F ◦ f ◦ F−1 ∈ Aut(D). Thus:

F ◦ f ◦ F−1 = eiθ ◦ ψα.

⇕

f = F−1◦
(
eiθ ◦ ψα

)
◦ F.

That is to say that Aut(H) = {F−1 ◦ g ◦ F | g ∈ Aut(D) }.

This is a completely satisfactory description of Aut(H), but we may want to find a
more concrete description of the same group. This can be obtained as follows:
Let SL(2, R) := {

(
a b
c d

)
| a, b, c, d ∈ R, with ad− bc = 1 }. Readers who are not con-

vinced this is a group may check that it is.

Definition 17.3 (Fractional Linear Transformation wrt A) Let
(
a b
c d

)
= A ∈ SL(2, R).

Then we define the fractional linear transformation with respect to A as

FA(z) :=
az + b

cz + d
.
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Theorem 17.4 (Characterization of Aut(H)) We have that:

1. A ∈ SL(2, R) =⇒ FA ∈ Aut(H).

2. f ∈ Aut(H) =⇒ ∃A ∈ SL(2,R) s.t. f = FA .

3. Aut(H) ∼= SL(2,R)⧸±I2 =: PSL(2,R) (“projectivized” special linear group).

Note 17.5 Note that ±I2 = ⟨−I2⟩ = { I2,−I2 } ◁ SL(2,R).

Proof:

1. FA is meromorphic in C, with one simple pole at z = −d
c ∈ R. Since this pole is

not in H, FA : H→ C is holomorphic.

Next we check that FA(H) ⊂ H. Let z = x+ iy ∈ H (ie ℑ(z) > 0). Then:

ℑ
(
FA(z)

)
= ℑ

(
az + b

cz + d

)
= ℑ

(
(az + b)(cz + d)

|cz + d|2

)

= ℑ

(
ac|z|2 + adz + bcz + bd

|cz + d|2

)

= ℑ

(
adz + bcz

|cz + d|2

)

=
(ad− bc)ℑ(z)
|cz + d|2

=
ℑ(z)
|cz + d|2

> 0.

Thus FA : H→ H holomorphic.

Note that FI2(z) = z. Let A =
(
a b
c d

)
, B =

( e f
g h

)
. It is straightforward (yet

tedious) to check that:

FA·B(z) =
(ae+ bg)z + af + bh

(ce+ dg)z + cf + dh
= FA ◦ FB.

It follows that (FA)
−1 = FA−1 . Thus FA is a biholomorpism from H to H. Thus

FA ∈ Aut(H).

2. Let z, w ∈ H. Our first step will be to show that ∃A ∈ SL(2,R) such that
FA(z) = w. We do this by finding A,B such that FA(z) = FB(w) = i. Then
FB−1·A(z) = w.
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Let 0 ̸= c ∈ R. Consider A1 =
(
0 − 1

c
c 0

)
. Then:

FA1(z) =
−1

c

cz
= − z

|cz|2
,

⇓

ℑ
(
FA1(z)

)
=
ℑ(z)
|cz|2

(let c =

√
ℑ(z)

|z|2 ) = 1.

iFA1(z)

z

We then take the translation FA2 , A2 =
(
1 b
0 1

)
, with FA2(z) = z + b. Let b =

−ℜ
(
FA1(z)

)
. Then:

FA2·A1(z) = i.

Our next step is to consider the rotation matrix:

Aθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Then FAθ
∈ Aut (D). Thus F ◦ FAθ

◦ F−1 ∈ Aut (H). One can calculate that:

F ◦ FAθ
◦ F−1(z) = e−2iθ,

ie F ◦ FAθ
◦ F−1 is the rotation by −2θ.

Now let f ∈ Aut(H). ∃! z0 ∈ H s.t. f(z0) = i. Now let A ∈ SL(2,R) s.t.
FA(i) = z0. Define the composition g := f ◦ FA ∈ Aut(H). Note that g(i) =
f
(
FA(i)

)
= f(z0) = i.

Then define the composition h := F ◦ g ◦ F−1 ∈ Aut(D). Note that h(0) =
F ◦ g ◦F−1(0) = F ◦ g(i) = F (i) = 0. By corollary (17.2), h is of the form eiθ α−z

1−αz .
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Since h(0) = 0, it follows that h is a rotation by −2θ for some θ ∈ R. Thus:

F ◦ g ◦ F−1 =h = F ◦ FAθ
◦ F−1.

⇓
f ◦ FA =g = FAθ

.

⇓
f = FAθA−1 .

And we have proved statement 2.

3. Consider the map α : SL(2,R) → Aut(H), A 7→ FA. We showed (earlier in the
proof) that:

• (in part 1) α is a group homomorphism (or a morphism of groups) ie

a) FA·B = FA ◦ FB,

b) (FA)
−1 = FA−1 .

• (in part 2) α is surjective ie SL(2,R) α−→ Aut(H)→ {e} is an exact sequence
of groups.

Then it follows by the first isomorphism theorem, with K := ker(α) ◁ SL(2,R),
that:

Aut(H) ∼= SL(2,R)⧸K.

That is to say that we have the exact sequence:

{ c } K SL(2,R) Aut(H) { c }α

Thus it suffices to determine K = ker(α) = {A ∈ SL(2,R) | FA = (x 7→ x) }. Let
A =

(
a b
c d

)
such that FA = (x 7→ x). Then:

az + b

cz + d
= z ∀z ∈ H.

⇓
cz2 + (d− a)z + b = 0 ∀z ∈ H.

This is a polynomial with infinite roots (all of H). However, a polynomial of degree
2 may have at most 2 roots, unless it is the 0 polynomial. Thus c = b = d− a = 0.
Thus A =

(
a 0
0 a

)
with the caveat that

∣∣ a 0
0 a

∣∣ = a2 = 1. Thus A = ±I2. Since
K = { I2,−I2 } we are done.
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We begin this lecture with a brief discussion on the function

18.1 Square Roots

Consider z ∈ C, α ∈ C. What does zα mean?

Example 18.1 If α ∈ Z, zα is known to us.

Example 18.2 If α = 1
2 , z

α is not known to us.

We do not have a solid idea of what z
1
2 is. We would like to call this

√
z, however if

w =
√
z ⇒ w2 = z, there are two distinct possibilities for w (for a non-zero z). This is

since if w0 is a solution, so is −w0.

Definition 18.3 (Powers of z) Let α, z ∈ C with z ̸= 0. Then we define the α-th
power of z as:

zα := eα log(z)

Remark 18.4 This definition is fine as z varies in Ω simply connected with 0 ̸∈ Ω, since
in this case we can take log(z) to be one branch of the complex logarithm of Ω, and define
zα by eα log(z). However, changing the branch of log changes log(z)→ log(z)+2πik, k ∈
Z, which will change zα as well. This is not desirable.

Thus zα can be defined on Ω simply connected, 0 ̸∈ Ω. They gives you holomorphic
functions on Ω, but there are many branches in general.

Example 18.5
√
z = e

1
2
log(z). If I change the branch of log, I get a new

√
z given by:

√
z = e

1
2
(log(z)+2πik) = e

1
2
log(z) · eπik = (−1)k · e

1
2
log(z).

Thus for Ω simply connected, 0 ̸∈ Ω there are exactly two branches of
√
z on Ω.

Remark 18.6 If Ω simply connected but 0 ∈ Ω, then in general
√
z can’t be defined as

a holomorphic function on Ω.

Counterexample 18.7 D = D1(0). Assume that f(z) :=
√
z existed, a holomorphic

function on D such that f2(z) = z, ∀z ∈ D. Then, noting that f(0) = 0:

1 =
d

dz
z

∣∣∣∣
z=0

=
d

dz
f2(z)

∣∣∣∣
z=0

= 2f(0)f ′(0) = 0  
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Remark 18.8 If Ω is simply connected and 0 ̸∈ Ω, let
√
z be any branch of square root

on om. Then ∀z ∈ Ω: ∣∣√z∣∣ =√|z|.
Indeed, letting z = reiθ:∣∣√z∣∣ = ∣∣∣e 1

2
log(reiθ)

∣∣∣ = ∣∣∣e 1
2
log(r)+ 1

2
i(θ+2πk)

∣∣∣ = ∣∣∣e 1
2
log(r)

∣∣∣ = ∣∣√r∣∣ = √r =√|z|.
18.2 A closer look at SL(2,R)

Recall from last lecture our treatment and definition of SL(2,R). Some elements of
SL(2,R) are more interesting than other ones:

• (translations) Tb =
(
1 b
0 1

)
, b ∈ R =⇒ FTb

(z) = z + b ie FTb
is translation by b.

0

b

H

• (inversion wrt D) S =
(
0 −1
1 0

)
, =⇒ FS(z) = −1

z .

0−1 1

z

−1
z

H

Observe that:

SL(2,Z) := {A =
(
a b
c d

)
| a, b, c, d ∈ Z, with ad− bc = 1 } ⊂ SL(2,R).

Similarly one can define PSL(2,Z) := SL(2,Z)⧸±I2 (called the ”modular group”).

Theorem 18.9 Let T = T1 =
(
1 1
0 1

)
∈ PSL(2,Z). Then ⟨S, T ⟩ = PSL(2,Z).

Proof: Consider A =
(
a b
c d

)
∈ PSL(2,Z). We cane freely assume that c > 0 (other-

wise multiply by −I2). We consider several cases:
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1. c = 0 : By the condition that |A| = 1, ad = 1. Since a, d ∈ Z, a = d = ±1. Then,
recalling that since we are working in PSL(2,Z) we can freely multiply by −I2:

A =

(
±1 b
0 ±1

)
=

(
1 ±b
0 1

)
= T±b.

Thus A ∈ ⟨S, T ⟩.

2. c = 1 :

By determinant condition ad− b = 1. Thus:

A =

(
a ad− 1
1 d

)
=

(
1 a
0 1

)(
0 −1
1 0

)(
1 d
0 1

)
= T a · S · T d.

Thus A ∈ ⟨S, T ⟩.

3. c > 1 : We proceed by induction on c, with the base case being c = 1. By
determinant condition ad − bc = 1. This is equivalent to gcd(c, d) = 1. We can
write d = cq + r with r ∈ N, 0 < r < c. Then:

A · T−q · S =

(
a b
c d

)(
1 −q
0 1

)(
0 −1
1 0

)
=

(
−aq + b −a
−cq + d −c

)
=

(
−aq + b −a

r −c

)
.

Since 0 < r < c, by induction it follows that A · T−q ·S ∈ ⟨S, T ⟩. Thus A ∈ ⟨S, T ⟩.

We present one more example of the computation of an automorphism group. So
far we have computed Aut(C), Aut(C∗), Aut(H), Aut(D), and Aut(S2). We will now
compute Aut(D∗) = Aut(D1(0) \ {0}).

Example 18.10 (Aut(D∗)) Aut(D∗) = {F : D∗ → D∗ | F holomorphic and bijective }.
By definition

∣∣F (z)∣∣ < 1, ∀z ∈ D∗. Thus 0 ∈ D is a removable singularity for F . By

theorem (10.6) ∃F̃ : D → C holomorphic s.t. F̃ |D∗= F . It follows from taking a limit
as z → 0 that

∣∣F̃ (z)∣∣ ≤ 1, ∀z ∈ D. Thus F̃ : D → D. Let us show first that F̃ (D) ⊂ D.

Clearly F̃ (D∗) ⊂ D, so we only need to check that F̃ (0) =: z ∈ D.
Assume that z ∈ ∂D ⇒ |z| = 1. Then note that F̃ is non-constant. By theorem

(12.13), F̃ (D) is open and contains z ∈ ∂D. Then Dr(z) ⊂ F̃ (D) for some r > 0.
Dr(z) contains points outside of D, a contradiction. Thus F̃ : D → D. Now F̃ (0) = 0
by the same argument in section 1 of example (13.10). Thus F̃ : D → D is bijective. So
F̃ ∈ Aut(D) and F̃ (0) = 0. By corollary (17.2):

F̃ (z) = eiθz, for some θ ∈ R.

It follows that Aut(D∗) = { eiθz | 0 ≤ θ < 2π } (rotations).
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18.3 Riemann Mapping Theorem

We now move to one of the more important results in complex analysis, the Riemann
Mapping Theorem. This theorem gives a description of the simply connected open sets
in C.

Theorem 18.11 (Riemann Mapping Theorem) Ω ⊂ C open, simply connected such
that Ω /∈ {∅, C }. Then ∀ z0 ∈ Ω, ∃ f : Ω→ D = D1(0) holomorphic and bijective (ie Ω
is biholomorphic to the unit disk) s.t. f(z0) = 0. Furthermore, such f is unique up to
composition with rotations of D.

Remark 18.12 This theorem tells us that up to biholomorphism, there are precisely
two non-empty non-empty, open, simply connected subsets of C (namely D and C). We
already know that there is no biholomorphism between C and D, since by corollary (7.5),
since f is an entire bounded holomorphic map, it is constant (which is not bijective).

Note 18.13 Simple connectedness is a property preserved by a biholomorphism.

Remark 18.14 Instead of assuming Ω simply connected, we can replace it by any of
the statements from theorem (15.9) applying to all f holomorphic. That is to say that
we may replace “Ω simply connected” by any of the following:

1. for every f : Ω→ C holomorphic, ∃F : Ω→ C an antiderivative of f on Ω,

2. for every f : Ω→ C holomorphic, and for every γ piecewise smooth closed path in
Ω,
∫
γ f(z) dz = 0,

3. for every f : Ω → C holomorphic, and for every γ0, γ1 piecewise smooth closed
path in Ω with similar end and initial points,

∫
γ0
f(z) dz =

∫
γ1
f(z) dz.

So we conclude that if Ω ⊂ C open, non-empty and satisfies any of the above condi-
tions, then Ω is simply connected.
Proof: If Ω = C, we are done (since C is simply connected). If Ω ̸= C, we apply

theorem (18.11) to get a biholomorphism f : Ω → D. D is convex and hence simply
connected. Since simple connectedness is preserved by biholomorphisms, it follows that
Ω is simply connected.

Proof:[Uniqueness in 18.11] Let f, g : Ω → D be two biholomorphisms s.t. f(z0) =
g(z0) = 0. Then consider h := f ◦ g−1 : D → D. h is a biholomorphism from D to D,
thus h is an automorphism of D. Since h(0) = 0, h must be a rotation. Thus f = g ◦ h.
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We dedicate this lecture to the proof of existence in theorem (18.11).

19.1 Proof of RMT

Proof:[Existence in 18.11] Let Ω ⊂ C non-empty, Ω ̸= C, satisfying that ∀ f : Ω →
C, ∃F : Ω → C antiderivative for f (in particular, this is satisfied if Ω is simply
connected). We want to find a biholomorphism f : Ω → D such that for some fixed
z0 ∈ Ω, f(z0) = 0. We reduce this proof into 3 steps.

19.1.1 Step 1

1. In this step we will reduce Ω to a subset of D by showing that there is a biholo-
morphism between Ω and a subset of D. Furthermore, this biholomorphism can
be constructed in such a way that Ω ∋ z0 7→ 0.

To do this, note that Ω ̸= C. Thus ∃α ∈ C \ Ω. Then z − α is a holomorphic
function on Ω that is never 0, so since we assume that Ω satisfies the previously
stated antiderivative property, it follows from theorem (15.11) and theorem (16.3)
that ∃ g : Ω→ C holomorphic function such that:

eg(z) = z − α, ∀z ∈ Ω.

That is to say that g is a branch of log(z − α) (g(z) is an antiderivative of 1
z−α).

Some properties of g include:

• g is injective. To see this let g(z1) = g(z2). Then z1 − α = eg(z1) = eg(z2) =
z2 − α, so z1 = z2.

• given w ∈ Ω, g(z) ̸= g(w)+2πi, ∀z ∈ Ω. To see this assume not. Then ∃ z ∈ Ω
s.t. g(z) = g(w)+2πi. Then z−α = eg(z) = eg(w)+2πi = eg(w) = w−α. Thus
z = w, so g(z) = g(w) ̸= g(w) + 2πi  .

This means that given any w ∈ Ω, g(w) + 2πi ̸∈ g(Ω).
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g(ω)

g(ω) + 2πi

ε

g(Ω)

In fact, ∃Dε(g(w) + 2πi) with g(Ω) ∩Dε(g(w) + 2πi) = ∅. Indeed, if this doesn’t
hold, then g(w)+2πi is not in the image, but is not separated by any disc from the
image, and is therefore in the boundary of the image. Thus ∃{zn}∞n=1, zn ∈ Ω s.t.
g(zn)→ g(w)+2πi. But zn−α = eg(zn) → eg(w)+2πi = eg(w) = w−α. This implies
that zn → w, thus g(zn)→ g(w). However by construction g(zn)→ g(w) + 2πi ̸=
g(w).

Remark 19.1 Since g : Ω→ g(Ω) is holomorphic and bijective, and since g(Ω) is
open by the Open Mapping Theorem, Ω is biholomorphic to g(Ω) which “misses a
whole disk”.

This is notable, in that there are simply connected sets that do not “miss a whole
disk”, such as the slit plane. Applying this procedure to the slit plane, we get that
the slit plane is biholomorphic to some set that misses a disk.

Now that we know that we have missed a disk, we will naively apply “1
z” to “flip

the inside and the outside of the disk. More precisely, pick any w ∈ Ω. Let:

F (z) :=
1

g(z)− (g(w) + 2πi)
.

Then F has the following properties:

• F is holomorphic on Ω, since g(z) ̸= g(w) + 2πi, ∀z ∈ Ω.

• F is injective on Ω, since F (z1) = F (z2) ⇒ g(z1) = g(z2) ⇒ z1 = z2 (since g
is injective).

• Since g(Ω) ∩ Dε(g(w) + 2πi) = ∅, then
∣∣g(z)− (g(w) + 2πi)

∣∣ ≥ ε, ∀ z ∈ Ω.
That is to say that all points in the image of g must lie at least ε away from
g(w) + 2πi. Thus it follows that:∣∣F (z)∣∣ = 1∣∣g(z)− (g(w) + 2πi)

∣∣ ≤ 1

ε
, ∀ z ∈ Ω.

Thus F (Ω) ⊂ D 1
ε
(0).
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Thus F : Ω→ F (Ω) ⊂ D 1
ε
(0) ⊂ D 2

ε
(0) is holomorphic, bijective, and F (Ω) is open

by the Open Mapping Theorem. Applying a biholomorphic rescaling G : z 7→ ε
2z

we get:

Ω
F−→ F (Ω)

G−→ G(F (Ω)) ⊂ D1(0).

Since F and G are both biholomorphic, so is F ◦ G. It follows that Ω is biholo-
morphic to G(F (Ω)) ⊂ D with z0 7→ G(F (z0)).

Finally we can scale and translate the image so that z0 maps to 0.

0 = z0

Ω

D

We are now done step one. We can relabel F (G(Ω)) as Ω, and similarly relabel
F (G(z0)) as z0.

19.1.2 Step 2

2. In this step we will find our biholomorphism f : Ω→ D. The idea here is to look
at a certain class of holomorphic functions and to maximize a certain property. f
will be found by solving a maximization problem over a well-chosen class of admis-
sible holomorphic functions (this argument comes up frequently in the Calculus of
Variations).

Let F = { f : Ω→ D | f holomorphic and injective, f(0) = 0 }. Note that since
Ω ⊂ D, by step 1, F is not empty (as (z 7→ z) ∈ F ). The f we want to find will
be in this class, since we want to find a holomorphic and bijective function f such
that f(0) = 0. It thus makes sense to look for our desired biholomorphism among
the elements of F . We shall find it by solving a maximization problem in F (at
this point it is unclear what maximization problem to solve).

Observe that F is a normal family of holomorphic functions from Ω→ D. Indeed
∀ f ∈ F ,

∣∣f(z)∣∣ ≤ 1, ∀ z ∈ D by definition, and thus F is a uniformly bounded
family. By theorem (8.2), F is a normal family.
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Observe that ∀ z ∈ Ω, choose some ε > 0 s.t. Dϵ(z) ⊂ Ω. Then note that:

L(∂Dε(z)) = 2πε,

sup
w∈∂Dε(z)

f(w)

(w − z)2
≤ 1

ε2
.

Then by equation (5.1) we have that ∀ f ∈ F :

f ′(z) =
1

2πi

∫
∂Dε(z)

f(w)

(w − z)2
dw,

=⇒
∣∣f ′(z)∣∣ ≤ 1

2π

∣∣∣∣∣
∫
∂Dε(z)

f(w)

(w − z)2
dw

∣∣∣∣∣
≤ L(∂Dε(z)) sup

w∈∂Dε(z)

f(w)

(w − z)2
≤ 1

ε
.

Applying this to z = 0 we get that:

S := sup
f∈F

∣∣f ′(0)∣∣ <∞.
Thus we shall maximize the functional:

D : F → R≥0

f 7→
∣∣f ′(0)∣∣ ,

with

sup
F

D = S <∞.

By the definition of sup, ∃ {fn}∞n=1, fn ∈ F s.t.
∣∣f ′n(0)∣∣ n→∞−−−→ S .

Recall that by theorem (7.17), F normal implies that if you have a sequence in
F , you can pick a subsequence that converges uniformly on compact subsets to
some limit function which is holomorphic, and in fact all the derivatives converge
in the same fashion. Thus ∃ a subsequence fnj s.t. fnj

u−→ f and f ′nj

u−→ f ′ on

compact subsets of Ω where f : Ω → D (the closure comes from the fact that
taking a limit possibly destroys our strict inequality, so |f | ≤ 1) is holomorphic.
Since

∣∣f ′n(0)∣∣ n→∞−−−→ S and
∣∣f ′n(0)∣∣ n→∞−−−→

∣∣f ′(0)∣∣, we have that
∣∣f ′(0)∣∣ = S .

Note that since Id ∈ F and
∣∣Id′(0)∣∣ = 1 we have that S ≥ 1, so S ̸= 0. It follows

that f cannot be constant (otherwise
∣∣f ′(0)∣∣ = 0). By example (13.2), f(Ω) ⊂ D

(ie f maps to the disk, not the closure).

We claim that f ∈ F :

• f : Ω→ D is holomorphic is done.
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• f(0) = limj fnj (0) = limj 0 = 0 is done.

• f is injective is not done.

It thus remains to check that f is injective.

Lemma 19.2 Ω ⊂ C open, {fn}∞n=0, fn : Ω → C holomorphic and injective.

Suppose that fn
u−→ f on compact subsets of Ω, where f : Ω → C holomorphic.

Then either f is injective or f is constant.

Example 19.3 Ω = C, fn(z) = z
n . Then fn

u−→ 0 which is constant.

Proof: For a contradiction suppose that f is neither injective nor constant. In
particular ∃ z1 ̸= z2 ∈ Ω s.t. f(z1) = f(z2). Let gn := fn(z) − fn(z1)

u−→ f(z) −
f(z1) = g(z). Then g ̸≡ 0 since f is non-constant. Note that g(z2) = 0. Then z2 is
an isolated 0 for g of order N ≥ 1. By theorem (11.10) (for some ε > 0 small such
that g(w) ̸= 0 ∀ 0 < |w − z2| < ε):

1 ≤ N =
1

2πi

∫
∂Dε(z2)

g′(w)

g(w)
dw.

Since gn → g locally uniformly, thus g′n → g′ locally uniformly. Thus:

g′n(w)

gn(w)
→ g′(w)

g(w)
uniformly for w ∈ ∂Dε(z2)

⇓ .
1

2πi

∫
∂Dε(z2)

g′n(w)

gn(w)
dw → 1

2πi

∫
∂Dε(z2)

g′(w)

g(w)
dw ≥ 1.

The LHS is equal to the number of zeroes of gn inside Dε(z2). But since fn is
injective, gn has no zeroes in Dε(z1), thus the LHS = 0  .

It follows that our f is injective, and hence f ∈ F .

19.1.3 Step 3

3. In this step we show that f must be surjective. In the last step we picked f injective
such that

∣∣f ′(0)∣∣ is as large as possible (it is not clear yet how surjectivity follows
from this).

Suppose for a contradiction that f is not surjective, thus ∃α ∈ D s.t. α /∈ f(Ω).
Consider ψα(z) =

α−z
1−αz . Consider then ψα◦f : Ω→ D. Then ψα(f(Ω)) satisfies our

assumption about the existence of antiderivatives (since ψα(f(Ω)) is biholomorphic
to Ω). Further note that α /∈ f(Ω) ⇐⇒ 0 /∈ ψα(f(Ω)). By the antiderivative

assumption, ∃ a branch of log(z) on ψα(f(Ω)). Then define g(z) := e
1
2
log(z) a

branch of
√
z on ψα(f(Ω)).
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The key trick is to now examine:

F := ψg(α) ◦ g ◦ ψα ◦ f.

This is a holomorphic function from Ω→ D with F (0) = 0 (recalling that f(0) =
0). The goal will be to show that F ∈ F , and that

∣∣F ′(0)
∣∣ > ∣∣f ′(0)∣∣, a contradiction

(since by construction
∣∣f ′(0)∣∣ is maximized). To show that F ∈ F , we must show

that F is injective.

We claim that F is injective. Since f is injective, and since ψα, ψg(α) are bijective,
it remains to show that g is injective. Suppose that g(z1) = g(z2). Then:

e
1
2
log(z1) = e

1
2
log(z2),

⇓
1

2
log(z1) =

1

2
log(z2) + 2πik.

Since the two branches of log(z) are the same, k = 0. Thus:

log(z1) = log(z2),

⇓
(exponentiate) z1 = z2.

Thus g is injective. Thus F is injective. Thus F ∈ F .

We now claim that
∣∣F ′(0)

∣∣ > ∣∣f ′(0)∣∣. Then, remarking that ψ2
α = Id, letting

h : D → D, z 7→ z2, and letting Φ := ψα ◦ h ◦ ψg(α) we have that:

Φ ◦ F = f.

Then note that Φ : D → D holomorphic. Then:

Φ(0) = ψα ◦ h ◦ ψg(α)(0) = ψα ◦ h ◦ g(α) = ψα(α) = 0.

Φ is not injective since h is not injective and ψα, ψg(α) are bijective. By theorem
(17.1),

∣∣Φ′(0)
∣∣ ≤ 1 with

∣∣Φ′(0)
∣∣ = 1 implying that Φ is a rotation. Since Φ is not

injective, it cannot be a rotation. Thus
∣∣Φ′(0)

∣∣ < 1. Differentiating at 0 then taking
the modulus we get:∣∣f ′(0)∣∣ = ∣∣Φ′ ◦ F (0)

∣∣ ·∣∣F ′(0)
∣∣ = ∣∣Φ′(0)

∣∣ ·∣∣F ′(0)
∣∣ < ∣∣F ′(0)

∣∣ .
This is a contradiction, since by construction ∀ g ∈ F ,

∣∣f ′(0)∣∣ ≥ ∣∣g′(0)∣∣. It follows
that f is surjective.

Thus our constructed f is a biholomorphism between Ω and D, and we are done.
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Lecture 20: November 10

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

Last lecture we proved the Riemann Mapping Theorem. Usually the proof relies on
Ω simply connected, but in fact replacing simply connected with the condition of f
holomorphic having an antiderivative works.

20.1 Examples of Riemann Mappings

The biggest problem with the proof for the Riemann Mapping Theorem is that the proof
is not constructive. That is to say that given Ω ̸= C simply connected, we do not have
a given procedure for finding a biholomorphism f : Ω → D, merely that f exists. It
is thus meaningful to examine some explicit examples of Riemann mappings (our name
for these biholomorphisms) f : Ω→ D where Ω is some explicit simply connected open
set. Stein and Shakarchi discuss the Riemann mapping from the interior of a polygon
to D by using elliptic integrals. This is too complicated for us, but we will discuss other
examples.

Example 20.1 (Upper Half Plane) Let:

Ω = H.

We already found an explicit Riemann mapping F : H → D, z 7→ i−z
i+z along with the

inverse z 7→ i · 1−z
1+z .

Example 20.2 (First Quadrant) Let:

Ω = { z ∈ C | ℑ(z) > 0 and ℜ(z) > 0 } .

Let h(z) := z2. Then notice that h(Ω) = H. This follows from examining the polar form

and noticing that h :
√
rei

θ
2 7→ reiθ, which corresponds to any arbitrary element in H for

θ ∈ (0, π2 ). Since Ω doesn’t include 1, the inverse of h can be taken to be the principal
branch of

√
z. Especially, h is bijective, and thus h is a biholomorphism between the first

quadrant and H.
Then F ◦ h : Ω→ D is a biholomorphism from Ω to D.

Example 20.3 (Slice of C of Size π
n) Let:

Ω = Sπ
n
:= { z ∈ C | Arg(z) ∈ (0,

π

n
) } .
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Ω

Similarly to the previous example (which is the special case n = 2), we let h(z) := zn.

The inverse map is z 7→ z
1
n = e

1
n
log(z) with log(z) as the principal branch of log. Then

as before F ◦ h : Ω→ D is a biholomorphism from Ω to D.

Example 20.4 (Slice of C of Size απ) Let:

Ω = Sαπ := { z ∈ C | Arg(z) ∈ (0, απ) } for α ∈ (0, 2).

Then z 7→ zα is a biholomorphism from Ω to H and z 7→ z
1
α is the inverse where:

zα = eα log(z),

z
1
α = e

1
α
log(z),

and log(z) is some branch of log on C\ [0,∞) ie if z = reiθ then zα = rαeiαθ. As before,
the composition of these two maps provides a biholomorphism from Ω to D.

Example 20.5 (Upper Half Disk) Let

Ω = { z ∈ D = D1(0) | ℑ(z) > 0 } .

The naive thought is to take f : z 7→ z2. This doesn’t work since Ω is missing the line
[0, 1), and thus f(Ω) = D \ [0, 1).

Instead we find a biholomorphism from Ω to the first quadrant (denoted Ω̃). We claim
that f : z 7→ 1+z

1−z is a biholomorphism between Ω and Ω̃. Then, with z = x+ iy:

f(z) =
1 + z + iy

1− x− iy
=

(1 + x+ iy)(1− x+ iy)

(1− x)2 + y2

=
1− x2 − y2

(1− x)2 + y2
+ i · 2y

(1− x)2 + y2
.

Clearly then f(Ω) ⊂ Ω̃, since y > 0 and since x2 + y2 < 1. Since the only pole of f is
at z = 1 ̸∈ Ω, f : Ω→ Ω̃ is holomorphic. One can calculate that:

f−1(z) =
z − 1

z + 1
.

Then f−1 : Ω̃→ C is holomorphic since the only pole is at z = −1 ̸∈ H. Then:∣∣∣∣z − 1

z + 1

∣∣∣∣ < 1 ⇐⇒ |z − 1| < |z + 1| .

which clearly follows from this picture:
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−1 1

z

|z + 1| |z − 1|

And thus f−1(Ω̃) ⊂ D.
Then with some calculation we find that, letting z = x+ iy:

ℑ
(
f−1(z)

)
=

2y

(x+ 1)2 + y2
> 0.

Thus f−1(Ω̃) ⊂ H. It follows that f−1(Ω̃) ⊂ Ω, thus f has a well defined inverse
and is thus bijective. Thus f is biholomorphic. It follows that F ◦ f : Ω → D is a
biholomorphism, so we are done.

Example 20.6 (Infinite Strip) Let Ω = { z ∈ C | ℑ(z) ∈ (0, π) }.

πi

0

Ω

Then f : Ω → H, z 7→ ez is a biholomorphism with f−1 : z 7→ log(z) as an inverse,
where log is the branch on H that takes z to log(r) + iθ with z = reiθ, θ ∈ (0, π). Thus
ℑ(log(z)) ∈ (0, π) for z ∈ H. Thus f−1(H) ⊂ Ω.
Then, noting that sin(y) > 0 for y ∈ (0, π), f(Ω) ⊂ H since:

ℑ (ez) = ℑ
(
exeiy

)
= ℑ

(
ex(cos(y) + i sin(y))

)
= ex sin(y) > 0,

thus the H and Ω are biholomorphic, and thus we have found a biholomorphism between
Ω and D.

We now move to a new topic – the study of the Euler Gamma Function.

20.2 Euler Gamma Function

The Gamma function is usually studied in real analysis, but we will generalize it to C.
This leads to the Zeta function, which has many applications in fields such as number
theory.
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Definition 20.7 (Positive Gamma Function) Let s ∈ (0,∞) ⊂ R. Then we define
the positive gamma function as:

Γ(s) :=

∫ ∞

0
e−tts−1 dt.

Remark 20.8 This integral is improper. To check for convergence we note that:

• Near ∞, the integrand ≤ Ce
−t
2 (since e−t shrinks fast), thus it converges at ∞.

• Near 0, the integrand ≤ ts−1 (which converges for s > 0), thus it converges at 0.

So this integral converges.

Note 20.9 The bound of Ce
−t
2 comes from the fact that e−tts−1 = e−

t
2 · e−

t
2 ts−1, and

noting that for t ∈ [1,∞), e−
t
2 ts−1 < C for some C ∈ R.

Proposition 20.10 Γ has an extension to a holomorphic function Γ(s) defined on the
half plane { s ∈ C | ℜ(s) > 0 } given by the same formula where ts−1 = e(s−1) log(t), with
log(t) the usual natural log (since 0 < t <∞).

Proof: It suffices to show that Γ(s) =
∫∞
0 e−tts−1 dt is a holomorphic function on

{ s ∈ C | ℜ(s) > 0 }, since it’s obviously equal to the real equivalent (where the real
version is defined).

Let Fε(s) :=
∫ 1/ε
ε e−tts−1 dt. Then we are trying to define:

Γ(s) = lim
ε↓0

Fε(s) := lim
ε↓0

∫ 1
ε

ε
e−tts−1 dt.

We firstly claim that Fε(s) is holomorphic in { s ∈ C | ℜ(s) > 0 }.

Lemma 20.11 (General Fact) If Ω ⊂ C open, F (z, t) a continuous function on Ω×
[a, b] which for each t ∈ [a, b] is such that F (z, t) is holomorphic in z ∈ Ω. Then

f(z) :=
∫ b
a F (z, t) dt is holomorphic in Ω.

Proof:[20.11] To prove this fact, it suffices to check that ∀D ⊂⊂ Ω, f is holomorphic
on D. By corollary (6.2), it is enough to check that ∀T ⊂ D triangle the integral over
the boundary of the triangle is 0. Then:∫

∂T
f(z) dz =

∫
∂T

∫ b

a
F (z, t) dtdz

(Fubini) =

∫ b

a

(∫
∂T
F (z, t) dz

)
dt

(equation (5.1)) =

∫ b

a
(0) dt = 0.

And we are done.
To apply this lemma, let Ω = { s ∈ C | ℜ(s) > 0 }, [a, b] = [ε, 1ε ], F (z, t) = e−ttz−1.

Then Fε is holomorphic on Ω. Fix any M > δ > 0. Then consider:

Ωδ,M := { s ∈ C | δ < ℜ(s) < M } .
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δ M

Note that for σ = ℜ(s) we have:∣∣∣e−tts−1
∣∣∣ = ∣∣∣e−te(s−1) log(t)

∣∣∣ = ∣∣∣e−te(σ−1) log(t)
∣∣∣ = e−ttσ−1.

Then on this strip (ie points s such that δ < σ < M) we can estimate:

∣∣Γ(s)− Fε(s)
∣∣ = ∣∣∣∣∣

∫ ε

0
e−tts−1 dt+

∫ ∞

1
ε

e−tts−1 dt

∣∣∣∣∣
≤
∫ ε

0
e−ttσ−1 dt+

∫ ∞

1
ε

e−ttσ−1 dt.

Noting that: ∫ ε

0
e−ttσ−1 dt ≤

∫ ε

0
tσ−1 dt =

εσ

σ
≤ εδ

δ

ε→0−−−→ 0.

And that: ∫ ∞

1
ε

e−ttσ−1 dt ≤
∫ ∞

1
ε

e−ttM−1 dt

(t ∈ [1ε ,∞)) ≤
∫ ∞

1
ε

CMe
− t

2 dt

= CM

(
−2e

−t
2

) ∣∣∣∣∞
1
ε

= 2CMe
−1
2ε

ε→0−−−→ 0.

We have that for all s: ∣∣Γ(s)− Fε(s)
∣∣ = 0.

It follows that Fε
u−→ Γ on Ωδ,M , and thus that Γ is holomorphic on Ωδ,M . It follows

that Γ is holomorphic on Ω.
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Now we go into more detail on the Gamma function.

21.1 Gamma Function Properties

Proposition 21.1 For every s ∈ C with ℜ(s) > 0 we have that:

Γ(s+ 1) = s · Γ(s).

It follows that ∀n ∈ N we have that:

Γ(n+ 1) = n!.

1 2 3 4

1

2

3

4

5

6 x!

x

Γ(x+ 1)

Proof: We apply theorem (3.5):

e−
1
ε

(
1

ε

)s

− e−ε (ε)s =

∫ 1
ε

ε

d

dt

(
e−tts

)
dt = −

∫ 1
ε

ε
e−tts dt+ s

∫ 1
ε

ε
e−tts−1 dt.

If σ = ℜ(s) > 0, then we have:∣∣∣∣∣e− 1
ε

(
1

ε

)s

− e−ε (ε)s

∣∣∣∣∣ ≤
∣∣∣∣∣e− 1

ε

(
1

ε

)s
∣∣∣∣∣+∣∣∣e−ε (ε)s

∣∣∣
= e−

1
ε

(
1

ε

)σ

+ e−εεσ
ε→0−−−→ 0.
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By taking the limit as ε goes to 0, we have that:

Γ(s+ 1) =

∫ ∞

0
e−tts dt = s

∫ ∞

0
e−te−tts−1 dt = s · Γ(s).

To prove the case for n ∈ N, we note that:

Γ(1) =

∫ ∞

0
e−t dt = −e−t

∣∣∣∞
0

= 1 = 0!.

Applying induction we get that:

Γ(n+ 1) = n!.

We have so far seen that Γ acts nicely on the right complex plane. We will now prove
that in fact it can be extended to a nice function on C.

Theorem 21.2 ∃! a meromorphic function (also denoted Γ) on C, which extends Γ on
{ℜ(s) > 0 }, whose poles are simple poles at s ∈ −N = { 0,−1,−2,−3, · · · } with

Res−n (Γ) =
(−1)n

n!
.

Proof: The uniqueness of the extension follows from the uniqueness of the analytic
continuation.

Since the convergence at ∞ was very fast (exponential), this suggests the following
for ℜ(s) > 0, we write:

Γ(s) =

∫ 1

0
e−tts−1 dt+

∫ ∞

1
e−tts−1 dt.

We claim that
∫∞
1 e−tts−1 dt defines an entire holomorphic function in s ∈ C. Indeed,

this follows from the same argument that was used to prove proposition (20.10). We

write Fε(s) =
∫ 1

ε
1 e−tts−1 dt. Then Fε is an entire holomorphic function, since e−tts−1 =

e−t · e(s−1) log(t) is an entire holomorphic function in s (this is true since it’s essentially
es). The holomorphicity of Fε for all s ∈ C follows from lemma (20.11). For σ = ℜ(s) <
σ0 ∈ R we have that

∣∣∣∫∞
1 e−tts−1 dt− Fε(s)

∣∣∣ ≤ ∣∣∣∫∞
1
ε
e−tts−1 dt

∣∣∣ ≤ Cσ0e
− 1

2ε → 0. Since σ0

is arbitrary, it follows that it is holomorphic everywhere.
Now we must deal with

∫ 1
0 e

−tts−1 dt. It is not holomorphic, and we thus want to
extend it to a meromorphic function on C. First we expand e−t as a Taylor series (with
ℜ(s) > 0, otherwise the integral is divergent):∫ 1

0
e−tts−1 dt =

∞∑
n=0

∫ 1

0

(−1)n

n!
tn+s−1 dt

=
∞∑
n=0

(−1)n

n!

(
tn+s

n+ s

)∣∣∣∣∣
1

0

=
∞∑
n=0

(−1)n

n!
· 1

(n+ s)
.
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We can see that the first term in this sum is just the complex exponential. The second
term suggests that there will be some issues when s is a negative integer.
Now fix some R > 0, and pick 2R < N ∈ N, and write:

∞∑
n=0

(−1)n

n!
· 1

(n+ s)
=

N∑
n=0

(−1)n

n!
· 1

(n+ s)
+

∞∑
n=N+1

(−1)n

n!
· 1

(n+ s)
.

We examine these two terms for s ∈ DR(0).
∑N

n=0
(−1)n

n! ·
1

(n+s) is obviously a meromor-

phic function with simple poles at every negative integer in this disk (with the correct

residue as well).
∑∞

n=N+1
(−1)n

n! ·
1

(n+s) has no poles on this disk, and converges absolutely

on DR(0) since for n ≥ N + 1, N > 2R and s ∈ DR(0), noting that:

|n+ s| ≥ n−|s| > N + 1−R > R,

we have that: ∣∣∣∣ (−1)n

n!(n+ s)

∣∣∣∣ = 1

n!|n+ s|
<

1

n!R
,

and thus:

∞∑
n=N+1

∣∣∣∣(−1)nn!
· 1

(n+ s)

∣∣∣∣ < ∞∑
n=N+1

1

n!R
<∞.

Now, letting R ∈ R+, for s ∈ DR(0) and taking N > 2R, we define:

Γ(s) =
N∑

n=0

(−1)n

n!(n+ s)︸ ︷︷ ︸
meromorphic

+
∞∑

n=N+1

(−1)n

n!(n+ s)
+

∫ ∞

1
e−tts−1 dt︸ ︷︷ ︸

holomorphic

.

Where the meromorphic part has the desired poles and residues.
This defines the meromorphic extension of Γ to DR(0). The choice of N is irrelevant,

since for ℜ(s) > 0 they all agree with Γ (the holomorphic function before), so they are
all equal by uniqueness of analytic continuation. That is to say that the choice of N
makes no difference, since any choice of N will yield functions that agree on the right
half plane. By the uniqueness of analytic continuation, these will be equal.
Finally, R is arbitrary, which implies that this will work for any point in C (extensions

with a different value of R will agree based off of the same argument as before).

We now want to prove that Γ does not vanish. We begin with a preparatory lemma.

Lemma 21.3 For a ∈ (0, 1), we have:∫ ∞

0

xa−1

1 + x
dx =

π

sin(πa)
.
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Proof: We apply a change of variables:

x = ey ⇐⇒ y = log(x)

dx = ey dy.

Then: ∫ ∞

0

xa−1

1 + x
dx =

∫ ∞

−∞

e(a−1)y

1 + ey
· ey dy =

∫ ∞

−∞

eay

1 + ey
dy

(apply example (9.11)) =
π

sin(πa)
.

Theorem 21.4 (Gamma Functional Equation) ∀s ∈ C:

Γ(s) · Γ(1− s) = π

sin(πs)
.

Note 21.5 Recall that the complex sin is defined as:

sin(πs) =
eπis − e−πis

2i
.

Proof:[21.4] We will first check that both sides have the same poles with the same
order.
The poles of the RHS are the zeroes of sin(πs). That is to say that the poles are all s

such that eπis = e−πis ⇔ e2πis = 1⇔ s ∈ Z. Thus the RHS has simple poles at all s ∈ Z.
To find the poles of the LHS, note that Γ(s) has simple poles at s ∈ { 0,−1,−2, · · · } and
that Γ(1 − s) has simple poles at s ∈ { 1, 2, · · · }. It follows that Γ(s) · Γ(1 − s) has (at
worst) simple poles at s ∈ Z. That is to say that Γ(s) · Γ(1− s) has no poles outside of
the integers.
Thus both the LHS and RHS are holomorphic for ℜ(s) ∈ (0, 1). To prove equality, it

suffices to prove it for s ∈ (0, 1) ⊂ R (since if they’re equal on this segment, they are
equal on ℜ(s) ∈ (0, 1) by analytic continuation).

Now let s ∈ (0, 1) ⊂ R. Then:

Γ(1− s) =
∫ ∞

0
e−uu−s du

(let u = vt, t > 0) = t

∫ ∞

0
e−vt(vt)−s dv.
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Then:

Γ(s) · Γ(1− s) =
∫ ∞

0
e−tts−1Γ(1− s) dt

=

∫ ∞

0
e−tts−1

(
t

∫ ∞

0
e−vt(vt)−s dv

)
dt

=

∫ ∞

0

∫ ∞

0
e−t(1+v)v−s dv dt

(convergent, so Fubini applies) =

∫ ∞

0

(∫ ∞

0
e−t(1+v) dt

)
v−s dv

=

∫ ∞

0

(
1

1 + v

)
v−s dv

=

∫ ∞

0

v−s

1 + v
dv

(lemma (21.3), with a = 1− s ∈ (0, 1)) =
π

sin(π(1− s))

=
π

sin(πs)
.

And we are done.

Corollary 21.6 ∀s ∈ C \ { 0,−1,−2, · · · }, we have that Γ(s) ̸= 0.

Proof: To prove this we apply the formula proven in the last theorem. For s ∈
C \ { 0,−1,−2, · · · } we have:

1

Γ(s)
= Γ(1− s) · sin(πs)

π
.

Note that Γ(s) ̸= 0 ⇔ 1
Γ(s) has no poles. Γ(1 − s) has simple poles at { 1, 2, 3, · · · }.

sin(πs)
π has simple zeroes at Z. These two cancel out, so it follows that 1

Γ(s) has no poles

(thus it is entire), and has simple zeroes at { 0,−1,−2, · · · }. It follows that Γ(s) ̸= 0 for
s ∈ C \ { 0,−1,−2, · · · } (and additionally that Γ(s) has poles at { 0,−1,−2, · · · }, which
we already know).

21.2 Motivation for Riemann Zeta Function

Recall that the Gamma function is defined as, for ℜ(s) > 0:

Γ(s) =

∫ ∞

0
e−tts−1 dt.

We now insert an n ∈ N>0 into the exponent of the exponential:∫ ∞

0
e−ntts−1 dt

u=nt
=

∫ ∞

0
e−uu

s−1

ns−1
· 1
n
du

=
1

ns
· Γ(s).
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This gives us:

1

ns
=

1

Γ(s)
·
∫ ∞

0
e−ntts−1 dt.

Note that since Γ is entire, this is fine as a denominator. Then Riemann’s idea was to
sum this over n, letting ζ(s) =

∑∞
n=1

1
ns = 1

Γ(s)

∑∞
n=1

∫∞
0 e−ntts−1 dt.

Next lecture we will continue discussing the Riemann Zeta function, and its proper-
ties.
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Lecture 22: November 17

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

This lecture we will discuss the Riemann Zeta function in more detail.

22.1 The Riemann Zeta Function

Definition 22.1 (Riemann Zeta Function) We define:

ζ(s) =
∞∑
n=1

1

ns
.

This is called the Riemann Zeta function.

Remark 22.2 Recall from last lecture that 1
ns = 1

Γ(s) ·
∫∞
0 e−ntts−1 dt. It follows that:

ζ(s) =
1

Γ(s)

∞∑
n=1

∫ ∞

0
e−ntts−1 dt.

Note that we cannot say this for certain since we do not know whether or not
∑∞

n=0
1
ns

is finite. We will show later that for this converges for ℜ(s) > 1, and thus that this is
rigorously true for ℜ(s) > 1.

Note that ∀s ∈ C, where log is the natural log, we have:

1

ns
:= e−s log(n).

More precisely, one notices that if we want this integral to converge absolutely, it’s
enough to take ℜ(s) > 1. Let ℜ(s) = σ > 1. Then:

∞∑
n=1

∣∣∣∣ 1ns
∣∣∣∣ = ∞∑

n=1

∣∣∣e−s log(n)
∣∣∣

=
∞∑
n=1

e−σ log(n)

=
∞∑
n=1

1

nσ

(since σ > 1) <∞.

To summarize:
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• For n ∈ N>0 then 1
ns = e−s log(n) is an entire function.

• For ℜ(s) > 1 then ζ(s) =
∑∞

n=1
1
ns is absolutely convergent, thus:

∞∑
n=1

1

ns
= lim

N→∞

N∑
n=1

1

ns
,

and ∀n,
∑N

n=1
1
ns is holomorphic for all ℜ(s) > 1.

It follows that limN→∞
∑N

n=1
1
ns is holomorphic on ℜ(s) > 1 (since absolutely conver-

gent series of holomorphic functions on Ω are also holomorphic on Ω). We conclude that
ζ(s) is holomorphic on { s ∈ C | ℜ(s) > 1 }.
We will now show that there is a meromorphic extension of ζ(s) on C.

Theorem 22.3 (Riemann) ζ has a unique extension as a meromorphic function on
C, with a single pole at s = 1. This pole is simple, with Res1 (ζ) = 1.

Proof: To prove this we will leverage the observation made in remark (22.2).
Then for ℜ(s) > 1 we have:

ζ(s) =
1

Γ(s)

∞∑
n=1

∫ ∞

0
e−ntts−1 dt.

Recall that 1
Γ(s) is entire and has simple zeroes at s ∈ { 0,−1,−2, · · · } and that

1
Γ(1) = 1. It is thus sufficient to find a meromorphic extension of

∑∞
n=1

∫∞
0 e−ntts−1 dt

for ℜ(s) > 1. The sum and integral are both absolutely convergent, so we can switch
them to get:

∞∑
n=1

∫ ∞

0
e−ntts−1 dt =

∫ ∞

0

 ∞∑
n=1

e−nt

 ts−1 dt.

Then:

∞∑
n=1

e−nt =
∞∑
n=1

(
e−t
)n

=
∞∑
n=0

(
e−t
)n
− 1

(geometric series) =
1

1− e−t
− 1

=
e−t

1− e−t

=
1

et − 1
.
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Thus we are seeking a meromorphic extension of:∫ ∞

0

ts−1

et − 1
dt,

which is defined and holomorphic for ℜ(s) > 1. This function looks suspiciously similar

to Γ(s) =
∫∞
0

ts−1

et dt. Thus we shall apply the same technique that we used for the
meromorphic extension of Γ(s) (this was done last lecture in the proof for theorem
(21.2)). That is to say that we will split this integral into two parts – one will be
meromorphic, and one will be entire.
Now, for ℜ(s) > 1, we say that:∫ ∞

0

ts−1

et − 1
dt =

∫ 1

0

ts−1

et − 1
dt+

∫ ∞

1

ts−1

et − 1
dt.

Exactly as in the case for Γ, then
∫∞
1

ts−1

et−1 dt is an entire holomorphic function of s.
Indeed, we argue as last time. For ε ∈ (0, 1) we write:

Fε(s) =

∫ 1
ε

1

ts−1

et − 1
dt.

Then Fε(s) is an entire holomorphic function of s (since ts−1

et−1 is entire in s and [1, 1ε ] is
bounded and closed, we can apply lemma (20.11)). Then we can estimate:∣∣∣∣∣

∫ ∞

1

ts−1

et − 1
dt− Fε(s)

∣∣∣∣∣ =
∫ ∞

1
ε

ts−1

et − 1
dt.

Noting that et − 1 ≥ 1
2e

t for t ≥ 2 and letting σ = ℜ(s) < σ0 for any fixed σ0 then for
t ∈ [1ε ,∞) we can estimate:∣∣∣∣∣ ts−1

et − 1

∣∣∣∣∣ ≤ 2e−ttσ−1 ≤ 2e−ttσ0−1 ≤ Ce
−t
2 ≤ Cσ0e

−1
2ε

ε→0−−−→ 0.

Thus Fε(s) are entire and for all σ0 > 1, we have that Fε converges to
∫∞
1

ts−1

et−1 dt

uniformly on { s ∈ C | ℜ(s) < σ0 }. Thus
∫∞
1

ts−1

et−1 dt is entire holomorphic.

We are thus left with finding a meromorphic extension of
∫ 1
0

ts−1

et−1 dt. To do this, we

examine the behaviour of 1
et−1 near t = 0 (this is the only place where the integrand

acts badly). To do this we apply Taylor expansion of et at t = 0:

et = 1 + t+
t2

2
+ · · · .

et − 1 = t+
t2

2
+ · · · .

1

et − 1
=

1

t
(
1 + t

2 + · · ·
) =

1

t
+ E(t).
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Where E(t) (the error) is a real analytic function with no (non-removable) singularities:

E(t) :=
1

et − 1
− 1

t
=

∞∑
n=0

ant
n.

Plugging this in yields:∫ 1

0

ts−1

et − 1
dt =

∫ 1

0
ts−2 dt+

∫ 1

0
E(t)ts−1 dt

=
1

s− 1
+

∫ 1

0
E(t)ts−1 dt.

While for any N > 1 fixed, we can write (Taylor series with remainder):

E(t) =

N∑
n=0

ant
n + FN (t)

with
∣∣FN (t)

∣∣ ≤ CN t
N+1 ∀ t ∈ [0, 1].

Then: ∫ 1

0
E(t)ts−1 dt =

N∑
n=0

∫ 1

0
ant

n+s−1 dt+

∫ 1

0
FN (t)ts−1 dt

=

N∑
n=0

an
n+ s

+

∫ 1

0
FN (t)ts−1 dt.

Where
∑N

n=0
an
n+s is a meromorphic function on C with (at worst, since an could be 0)

simple poles at { 0,−1,−2, · · · ,−N }, while:∣∣∣∣∣
∫ 1

0
FN (t)ts−1 dt

∣∣∣∣∣ ≤
∫ 1

0

∣∣FN (t)
∣∣ tσ−1 dt

(use estimate of FN ) ≤ CN

∫ 1

0
tσ+N dt

(for σ > −N − 1) <∞.

Thus
∫ 1
0 FN (t)ts−1 dt is a holomorphic function on { s ∈ C | ℜ(s) > −N − 1 }.

Then for all N ≥ 1 we have:∫ ∞

0

ts−1

et − 1
dt =

∫ ∞

1

ts−1

et − 1
dt︸ ︷︷ ︸

entire

+
1

s− 1
+

N∑
n=0

an
n+ s︸ ︷︷ ︸

simple poles at

s ∈ { 1, 0,−1, · · · }

+

∫ 1

0
FN (t)ts−1 dt︸ ︷︷ ︸

holomorphic for

ℜ(s) > −N − 1

. (22.1)
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Thus the RHS defines our meromorphic extension on {ℜ(s) > −N − 1 }. Since N
is arbitrary, we can raise the value of N , giving us a new formula which gives us a
new extension on an even larger region that agrees with the previous extensions on the
smaller regions. Then

∫∞
0

ts−1

et−1 dt =
∑∞

n=1

∫∞
0 e−ntts−1 dt has a meromorphic extension

to C, with at worst simple poles at s ∈ { 1, 0,−1,−2, · · · }.
Finally, the meromorphic extension of ζ(s) is obtained by dividing the above mero-

morphic function by Γ(s). Since 1
Γ(s) is entire holomorphic and has simple zeroes at

s ∈ { 0,−1,−2, · · · }, it follows that (since a simple zero cancels out a simple pole)
1

Γ(s) · (22.1) is also a meromorphic extension on C, and has removable singularities at

s ∈ { 0,−1,−2, · · · }.
Then we have found a meromorphic extension of ζ(s) with a single pole at s = 1,

which is simple. Note that the residue of equation (22.1) at 1 is 1. Then the residue of
our extension at 1 is 1

Γ(1) · 1 = 1. Thus we have found a meromorphic extension of ζ(s)
with exactly one pole, which is at 1. Furthermore, this pole is simple, and has a residue
of 1. We have thus proven our claim.

ζ(s) is a truly remarkable object! Going forward we will dedicate some time to showing
some of the interesting properties of it.

We know that ζ(s) is holomorphic everywhere except s = 1.

Remark 22.4 A common misconception is that:

ζ(0) =

∞∑
n=1

1

n0
=

∞∑
n=1

1 = 1 + 1 + 1 + 1 + · · · ,

and that ζ(−1) =
∞∑
n=1

1

n−1
=

∞∑
n=1

n = 1 + 2 + 3 + 4 + · · · .

These are both nonsense. Both of these sums clearly diverge, while ζ(s) is finite every-
where except s = 1. The misconception comes from idea that we can use the definition
of ζ(s) that is reserved for ℜ(s) > 1 for these numbers. In fact:

ζ(0) = −1

2
,

and ζ(−1) = − 1

12
,

facts which we will show soon.

Note 22.5 In fact the “equations”:

1 + 1 + 1 + 1 + · · · = ζ(0) = −1

2
,

1 + 2 + 3 + 4 + · · · = ζ(−1) = − 1

12
.

are both used extensively in physics (specifically in quantum field theory).

22-5



Lecture 22: November 17

Remark 22.6 It turns out that ζ(2n) is known (they are powers of π), while ζ(2n+ 1)
is a total mystery. In 1977, Roger Apéry found that ζ(3) is irrational. This is the only
value of ζ(2n + 1) that has been proved to be irrational. The proof is apparently quite
cool!
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We want to now pivot to a different representation of ζ.

23.1 Euler Product Formula

23.1.1 Infinite Products

Given {an}∞n=1, an ∈ C, we shall say that their infinite product
∏∞

n=1 an converges if the

sequence AN =
∏N

n=1 an ∈ C converges to some A ∈ C as N →∞. In this case we will
write A =

∏∞
n=1 an.

Lemma 23.1 Suppose {an}∞n=1, an ∈ C, such that
∑∞

n=1|an| <∞. Then
∏∞

n=1 (1 + an)
is convergent and

∏∞
n=1 (1 + an) = 0 happens if and only if ∃m ≥ 1 s.t. 1 + am = 0.

Proof: Clearly if ∃m ≥ 1 s.t. 1 + am = 0 then
∏N

n=1(1 + an) = 0 ∀N ≥ m. Thus the
infinite product converges, and converges to 0. Now assume that 1+an ̸= 0∀n ≥ 1. Since∑∞

n=1|an| <∞, then |an|
n→∞−−−→ 0. Thus for all n sufficiently large, |an| < 1

2 ∀n ≥ n0. We
shall disregard the an’s for n < n0 (this doesn’t affect the convergence since there are a
finite number of these terms). WLOG assume that|an| < 1

2 ∀n ≥ 1. Then 1+an ∈ D 1
2
(1).

Note that 0 ̸∈ D 1
2
(1). We can thus use the principal branch of log on this disk. Then

we can calculate log(1 + an). This is well defined by the usual power series:

log(1 + z) = z − z2

2
+
z3

3
− · · · .

We also have that for |z| < 1:

1 + z = elog(1+z).

We further have for |z| < 1
2 that:

∣∣log(1 + z)
∣∣ = ∣∣∣∣∣z − z2

2
+
z3

3
− · · ·

∣∣∣∣∣ ≤ 2|z| .

Then let bn = log(1 + an). Then |bn| ≤ 2|an|. Then
∑∞

n=1|bn| ≤ 2
∑∞

n=1|an| <∞. Then∑N
n=1 bn

N→∞−−−−→ B. Now:

N∏
n=1

(1 + an) =
N∏

n=1

elog(1+an) =
N∏

n=1

ebn = e

(∑N
n=1 bn

)
N→∞−−−−→ eB ∈ C \ {0}.

Thus
∏∞

n=1(1 + an) <∞, and we are done.
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23.1.2 Euler Product Formula

Let p be a prime number (p ≥ 2). Then let s ∈ C. We have defined the complex power
p−s as:

p−s = e−s log(p)

where log is the natural log. Then we can consider 1−p−s. This is not zero for ℜ(s) > 1.
Indeed: ∣∣∣p−s

∣∣∣ = p−ℜ(s) =

(
1

p

)ℜ(s)

<
1

p
≤ 1

2
.

⇒
∣∣∣1− p−s

∣∣∣ ≥ 1

2
.

Then, for ℜ(s) > 1 we consider 1
1−p−s . We want to consider the infinite product of these

where p ranges over all primes. Now consider the partial product:∏
p ≤ N
prime

1

1− p−s
= exp

(
−
∑
p ≤ N
prime

log(1− p−s)

)
. (23.1)

Where log is the principal branch. Note that 1 − p−s ∈ D 1
2
(1). Then we check that∑

p prime log(1− p−s) is absolutely convergent. If it is, the sum in equation (23.1) has a
limit, so the LHS converges as well. Then applying lemma (23.1) it suffices to see that,
for ℜ(s) > 1 we have:

∑
p prime

∣∣∣p−s
∣∣∣ = ∑

p prime

p−ℜ(s) ≤
∞∑
n=1

n−ℜ(s) <∞

Thus for ℜ(s) > 1,
∏

p prime
1

1−p−s is convergent, and it defines a holomorphic function of

s for ℜ(s) > 1 (since
∏

p≤N
1

1−p−s is holomorphic for ℜ(s) > 1, and
∑∣∣p−s

∣∣ <∞ implies

uniform convergence).
Thus ∏

p prime

1

1− p−s

defines a holomorphic function on ℜ(s) > 1.

Theorem 23.2 (Euler Product Formula) For ℜ(s) > 1 we have that:

ζ(s) =
∏

p prime

1

1− p−s
.

23-2



Lecture 23: November 19

Proof: We know that both sides are holomorphic on ℜ(s) > 1. It suffices to prove
the equality for s ∈ (1,∞) ⊂ R (by corollary (7.12) these will be the same, since each
point will be an accumulation point).
We employ the fundamental theorem of arithmetic (n ∈ N can be decomposed

uniquely into primes). Fix M > N, M,N ∈ N. We claim that:

N∑
n=1

1

ns
≤
∏

p ≤ N
prime

(
1 +

1

ps
+

1

p2s
+ · · ·+ 1

pMs

)
. (23.2)

Indeed, for any 2 ≤ n ≤ N we can write, where 0 ≤ ap ≤M :

n =
∏

p ≤ N
prime

pap .

⇓
1

ns
=
∏

p ≤ N
prime

1

pap·s
.

It follows that (since ap ≤ M) every term in the LHS of equation (23.2) appears on
the RHS of equation (23.2). This follows by expanding out the RHS into a big sum,
and seeing that no two element in the LHS will be represented by the same element in
the RHS (by the uniqueness of prime factorization). Since each element in the RHS of
equation (23.2) is positive, our claim is proven. Then:

N∑
n=1

1

ns
≤
∏

p ≤ N
prime

(
1 +

1

ps
+

1

p2s
+ · · ·+ 1

pMs

)

(geometric series) ≤
∏

p ≤ N
prime

1

1− p−s

(since 1− p−s < 1) ≤
∏

p prime

1

1− p−s
.

Thus we have achieved half the equality we want:

ζ(s) ≤
∏

p prime

1

1− p−s
.

The other half follows similarly. We claim that:∏
p ≤ N
prime

(
1 +

1

ps
+

1

p2s
+ · · ·+ 1

pMs

)
≤

∞∑
n=1

1

ns
= ζ(s). (23.3)
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This is again because every term on the LHS of equation (23.3) appears on the RHS
of equation (23.3). This follows from expanding the LHS as a big sum, then noticing
that by unique prime factorization, every term in the LHS multiplies out to a unique
1
ns . The inequality follows by noting that any term of the RHS that is not in the LHS
is necessarily positive.
Then let M →∞. Then: ∏

p ≤ N
prime

1

1− p−s
≤ ζ(s).

⇓ let N →∞∏
p prime

1

1− p−s
≤ ζ(s).

And thus we have both sides of the equality we desire. Thus the claim has been proven.

Corollary 23.3 ∀s ∈ C with ℜ(s) > 1, we have that ζ(s) ̸= 0

Proof: Indeed, for ℜ(s) > 1, p prime, we have that 1
1−p−s ̸= 0. By lemma (23.1) then,

since
∑

p prime

∣∣p−s
∣∣ <∞:

ζ(s) =
∏

p prime

1

1− p−s
̸= 0.

Corollary 23.4 The following sum is divergent:∑
p prime

1

p

Note 23.5 As N increases, the number of primes less than N increases more and more
slowly. This result is unintuitive, since the “density” of primes is low.

Proof:[23.4] Let us use theorem (23.2) for ℜ(s) > 1. Consider the principal branch of
log. Since ζ(s) ̸= 0 on ℜ(s) > 1, we can take log(ζ(s)). Then:

log(ζ(s)) =
∑

p prime

(
− log(1− p−s)

)
.

Now let s ∈ R, s > 1, s close to 1. Then, noting that:

log(1 + x) = x− x2

2
+
x3

3
− · · · .

=⇒
∣∣log(1 + x)− x

∣∣ = ∣∣∣∣∣−x22 +
x3

3
− · · ·

∣∣∣∣∣
(for |x| < 1

2) ≤ 2|x|2 .

=⇒
∣∣∣log(1− p−s) + p−s

∣∣∣ ≤ 2p−2s.
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We have that:∣∣∣∣∣∣
∑

p prime

p−s −
∑

p prime

(
− log(1− p−s)

)∣∣∣∣∣∣ ≤
∑

p prime

∣∣∣∣(− log(1− p−s)
)
−
(
p−s
)∣∣∣∣

≤
∑

p prime

2p−2s

≤ 2

∞∑
n=1

n−2s

(indep. of s for s close to 1) ≤ C.

This implies that in some sense the sums
∑

p p
−s and

∑
p

(
− log(1− p−s)

)
act similarly

for s close to 1. We then let s→ 1+. Then we notice that:

log(ζ(s)) =
∑

p prime

(
− log(1− p−s)

)
.

That is to say that
∑

p p
−s will diverge as s → 1+ if and only if log(ζ(s))

s→1+−−−−→ +∞.
We know already that ζ(s) has a simple pole at s = 1 with residue 1, it follows that for
s near 1 we can write:

ζ(s) =
1

s− 1
+ h(s)︸︷︷︸

hol’c

.

However for s ∈ (1,∞) ⊂ R we have log
(

1
s−1

)
= − log(s− 1)

s→1+−−−−→ +∞. Since h(s) is

bounded it follows that log(ζ(s))
s→1+−−−−→ +∞.

Thus
∑

p p
−s diverges to +∞ as s→ 1+. Thus:

∑
p prime

1

p
= +∞.

And the claim is proven.
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Lecture 24: November 24

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

24.1 Functional Equation for Riemann Zeta Function

Theorem 24.1 (Zeta Functional Equation) ∀s ∈ C, we have that:

ζ(s) = 2s · πs−1 · sin
(
πs

2

)
· Γ(1− s) · ζ(1− s).

Note 24.2 This relation compares the value of ζ(s) with ζ(1− s). These are not equal,
but they are instead related through a “nice” multiplication factor.

Proof: To be discussed later.
Before the proof, we derive several consequences of this theorem. We begin with a

proposition.

24.1.2 Values of ζ(s)

Proposition 24.3 (Lindelöf) For all z ̸∈ Z, we have that:

π cot(πz) =
1

z
+

∞∑
n=1

2z

z2 − n2
.

Proof: Define f(z) := π cot(πz). First we notice that 1
z+n + 1

z−n = 2z
z2−n2 . Thus:

1

z
+

∞∑
n=1

2z

z2 − n2
=

1

z
+

∞∑
n=1

(
1

z + n
+

1

z − n

)
.

While it is tempting to write
∑∞

n=−∞
1

z+n , we cannot manipulate the sum casually since

it is very nearly divergent (since
∑∞

n=1
1

z+n is divergent). We can however apply a limit.
Then we have that:

1

z
+

∞∑
n=1

(
1

z + n
+

1

z − n

)
= lim

N→∞

∑
|n|≤N

1

z + n
=: g(z).

The we want to compare f(z) and g(z). Both functions are meromorphic in C. Both have
simple poles precisely at z ∈ Z. Note also that Res0 (f) = Res0 (g) = 1. Furthermore
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they are “periodic” with period 1, namely that ∀z ̸∈ Z, f(z + 1) = f(z) and g(z + 1) =
g(z). This is clear for f by the definition of cos and sin. This follows for g as:

g(z + 1) = lim
N→∞

∑
|n|≤N

1

z + 1 + n
= lim

N→∞

 1

z + 1 +N
− 1

z −N
+
∑

|n|≤N

1

z + n


= 0− 0 + lim

N→∞

∑
|n|≤N

1

z + n

= g(z).

It follows that f(z) − g(z) is also periodic with period 1. Since f and g both have a
simple pole at z = 0 with residue 1, then f − g has a removable singularity at z = 0. By
periodicity it follows that all singularities of f − g are removable. Thus f − g is entire
holomorphic and 1-periodic (periodic with period 1).
We now show that f − g is bounded in C. Since f − g is 1-periodic, f − g is uniquely

determined by its restriction to the strip S := { z ∈ C |
∣∣ℜ(z)∣∣ ≤ 1

2 } ie ∀z ∈ C ∃z0 ∈ S
s.t. (f − g)(z) = (f − g)(z0) with z = z0 + k for some k ∈ Z. Thus it suffices to show
that supS |f − g| ≤ C for some C. It further suffices to show that supS̃ |f − g| ≤ C for

some C where S̃ := { z ∈ C |
∣∣ℜ(z)∣∣ ≤ 1

2 ,
∣∣ℑ(z)∣∣ > 1 } (since S̃ \ S is relatively compact,

and thus f − g is bounded on it). We will show that supS̃ |f | ≤ C and supS̃ |g| ≤ C for
some C.

f : It suffices to show that supS̃
∣∣cot(πz)∣∣ ≤ C. Let z = x+ iy ∈ S̃. Then |x| ≤ 1

2 and
|y| > 1. Note that: ∣∣∣e−2πy + e−2πix

∣∣∣ ≤ ∣∣∣e−2πy
∣∣∣+∣∣∣e−2πix

∣∣∣ = 1 + e−2πy,

and that
∣∣∣e−2πy − e−2πix

∣∣∣ ≥ ∣∣∣e−2πy − 1
∣∣∣ .

We have that: ∣∣cot(πz)∣∣ = ∣∣∣∣∣i · eiπz + e−iπz

eiπz − e−iπz

∣∣∣∣∣
=

∣∣∣∣∣eiπxe−πy + e−iπxeπy

eiπxe−πy − e−iπxeπy

∣∣∣∣∣
=

∣∣∣∣∣e−2πy + e−2πix

e−2πy − e−2πix

∣∣∣∣∣
≤ 1 + e−2πy∣∣e−2πy − 1

∣∣ .
If y > 1 we have that e−2πy < 1

2 . Thus e
−2πy − 1 < 0 and thus:

∣∣cot(πz)∣∣ ≤ 1 + e−2πy

1− e−2πy
≤

(
1 + 1

2

)
(
1
2

) = 3.
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If y < −1 we have that e−2πy > 1. Thus e−2πy − 1 > 0 and thus:

∣∣cot(πz)∣∣ ≤ 1 + e−2πy

e−2πy − 1
.

These two exponential terms may blow up if y is very small. Thus we need to
fiddle around a little more. Note that in fact if y < −1 then e−2πy > 2. Then
1
2e

−2πy > 1. Then:

e−2πy − 1 > e−2πy − 1

2
e−2πy

=
1

2
e−2πy.

Thus we have, for y < −1, that:

∣∣cot(πz)∣∣ ≤ 1 + e−2πy

e−2πy − 1
≤

1
2e

−2πy + e−2πy

e−2πy − 1
2e

−2πy
= 3.

Thus f is always bounded.

g: We must show that supS̃ |g| ≤ C for some C. Note that z ∈ S̃ means that z is not

an integer. Let z = x+ iy ∈ S̃. Then |x| ≤ 1
2 and |y| > 1. Note that:

|z| =
√
x2 + y2 ≤|x|+|y| ≤ 1

2
|y|+|y| = 3

2
|y| ,

and

|z| = |x+ iy| ≥|y| −|x| ≥ 1

2
,

and, noting that z2 − n2 = (x+ iy)2 − n2 = (x2 − y2 − n2) + i(2xy):∣∣∣z2 − n2∣∣∣ =√(x2 − y2 − n2)2 + 4x2y2

≥
√

(x2 − y2 − n2)2

= y2 + n2 − x2

(x2 ≤ 1
2y

2) ≥ 1

2
y2 + n2

≥ 1

2

(
y2 + n2

)
.
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Then:

∣∣g(z)∣∣ =
∣∣∣∣∣∣ limN→∞

∑
|n|≤N

1

z + n

∣∣∣∣∣∣ =
∣∣∣∣∣∣1z +

∞∑
n=1

2z

z2 + n2

∣∣∣∣∣∣
≤
∣∣∣∣1z
∣∣∣∣+ ∞∑

n=1

∣∣∣∣ 2z

z2 + n2

∣∣∣∣
≤ 2 + 2

∞∑
n=1

|z|∣∣z2 + n2
∣∣

≤ 2 + 2
∞∑
n=1

3
2 |y|

1
2

(
y2 + n2

)
= 2 + 6

∞∑
n=1

|y|(
y2 + n2

) .
Now consider the case that y > 1. We then have that:

∞∑
n=1

|y|(
y2 + n2

) =
∞∑
n=1

y(
y2 + n2

)
(summand increasing in n) ≤

∫ ∞

0

y

y2 + x2
dx

= arctan

(
x

y

) ∣∣∣∣x=∞

x=0

=
π

2
.

Thus:

∣∣g(z)∣∣ ≤ 2 + 6
∞∑
n=1

|y|(
y2 + n2

) ≤ 2 + 3π.

Now we must consider the case where y < −1. We leave this as an exercise to the
reader.

Thus f − g is bounded. By corollary (7.5) then f − g is constant. Since f − g is odd,
it follows that f − g ≡ 0. Thus, f = g and we are done.

Corollary 24.4 ζ(0) = −1
2 .
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Proof: First we use the functional equation:

ζ(s) = 2s · πs−1 · sin
(
πs

2

)
· Γ(1− s) · ζ(1− s).

⇓ (mult by (1− s))

(1− s) · ζ(s) = 2s · πs−1 · sin
(
πs

2

)
· (1− s) · Γ(1− s)︸ ︷︷ ︸

done already

·ζ(1− s)

(proposition (21.1)) = 2s · πs−1 · sin
(
πs

2

)
· Γ(2− s) · ζ(1− s).

Recall that ζ has a simple pole at s = 1 with residue 1. Thus lims→1(s − 1) · ζ(s) = 1.
Then:

−1 = lim
s→1

(1− s) · ζ(s) = lim
s→1

2s · πs−1 · sin
(
πs

2

)
· Γ(2− s) · ζ(1− s)

= 21 · π0 · sin
(
π

2

)
· Γ(1) · ζ(0)

= 2 · ζ(0).
⇓

ζ(0) = −1

2
.

Corollary 24.5 ζ(2n) = (−1)n+1 (2π)2n

2·(2n)!B2n, n ≥ 1, with Bn the Bernoulli numbers.

Note 24.6 Finding ζ(2) was called the “Basel problem”.

Proof:[24.5] We shall use the complex cotangent, defined as:

cot(z) :=
cos(s)

sin(z)
z ∈ C.

Both cos and sin are entire holomorphic, and sin has simple zeroes at z ∈ {πk | k ∈ Z }.
Thus cot(z) is a meromorphic function with simple poles at z ∈ {πk | k ∈ Z }. Consid-
ering cot(πz) we have a meromorphic function with simple poles at z ∈ Z.

Now we take 0 < |z| < 1. Note that then
∣∣ z2
n2

∣∣ < 1. Then by proposition (24.3) we
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have:

π cot(πz) =
1

z
+

∞∑
n=1

2z

z2 − n2

=
1

z
− 2

∞∑
n=1

z

n2
· 1

1− z2

n2︸ ︷︷ ︸
sum of

geo. series

=
1

z
− 2

∞∑
n=1

z

n2

∞∑
k=1

(
z2

n2

)k−1

=
1

z
− 2

∞∑
n=1

∞∑
k=1

z2k−1

n2k

(abs. conv.) =
1

z
− 2

∞∑
k=1

∞∑
n=1

z2k−1

n2k

=
1

z
− 2

∞∑
k=1

z2k−1 · ζ(2k).

Further note that for |z| < 1 (this time 0 is included) we have:

πz cot(πz) = 1− 2

∞∑
k=1

ζ(2k) · z2k.

The RHS is a power series in z with the coefficients being the values that we want to
find. We thus expand the LHS as a power series and equate the terms to find ζ(2k).

πz cot(πz) = πz
sin(z)

cos(z)
= iπz

eiπz + e−iπz

eiπz − e−iπz

= iπz
e2iπz + 1

e2iπz − 1

= iπz

(
1 +

2

e2iπz − 1

)
= iπz +

2iπz

e2iπz − 1
.

We define the Bernoulli numbers Bm ∈ Q as the unique sequence satisfying (for x ∈ R):

x

ex − 1
=

∞∑
m=0

Bm

m!
xm.

Calculating these terms is computationally tedious. It is is true however that m >
1 odd =⇒ Bm = 0. This follows from the fact that x

ex−1 + x
2 is an even function.
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Indeed:

x

ex − 1
+
x

2
=
x(1 + ex)

2(ex − 1)

= −x
2
· 1 + ex

1− ex

= −x
2
· e

−x + 1

e−x − 1

= −x
2
· 2 + e−x − 1

e−x − 1

= − x

e−x − 1
− x

2

=
(−x)

e(−x) − 1
+

(−x)
2

.

So this function is even.
Now we continue from

1− 2

∞∑
k=1

ζ(2k) · z2k = iπz +
2iπz

e2iπz − 1

(Bernoulli numbers) = iπz +

∞∑
m=0

Bm

m!
(2πiz)m

=��iπz + 1− 1

2
����(2πiz) +

∞∑
m=2

Bm

m!
(2πiz)m

(odd Bm vanish) = 1 +

∞∑
m=1

B2m

(2m)!
(2πiz)2m

= 1 + (−2) ·
(
−1

2

) ∞∑
m=1

B2m

(2m)!
(2πiz)2m

= 1− 2
∞∑

m=1

B2m

2(2m)!
(2π)2m · (−1)m+1z2m.

These power series are equal, thus we can equate coefficients. Thus for all m ≥ 1 we
have that:

ζ(2m) = (−1)m+1 (2π)2m

2 · (2m)!
B2m.

Example 24.7 Noting that B2 =
1
6 , we have that ζ(2) = (2π)2

2·2 ·B2 = π2 · 16 = π2

6 .

Corollary 24.8 ζ(−(2n+ 1)) = −B2n+2

2n+2 , n ≥ 1, with Bn the Bernoulli numbers.
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Proof: Note that if n is a negative odd integer, then 1− n is a positive even integer.
We use the functional equation. Let m = 2n+ 1. Then:

ζ(−m) = 2−m · π−m−1 · sin
(
−mπ
2

)
· Γ(1 +m) · ζ(1 +m)

= 2−(2n+1) · π−2n−2 · (−1)n+1 · (2n+ 1)! · ζ(2n+ 2)

(corollary (24.5)) = 2−(2n+1) · π−2n−2 · (−1)n+1 · (2n+ 1)! ·

(
(−1)n · (2π)2n+2

2 · (2n+ 2)!
B2n+2

)

(simplify) = −B2n+2

2n+ 2
.

Example 24.9 ζ(−1) = −B2
2 = − 1

12 .

What is missing now for ζ(Z)?

• ζ(1) = “∞”.

• ζ(−2n) = 0 for n ≥ 1 (this will be shown later).

• ζ(2n+ 1) =??? for n ≥ 1 (this is still a mystery).
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Lecture 25: November 26

Instructor: Valentino Tosatti Scribe: Alexander Kroitor

25.1 Duplication Formula

We begin by introducing a theorem.

Theorem 25.1 (Legendre Duplication Formula) For all s ∈ C, we have that:

Γ

(
s

2

)
· Γ
(
s+ 1

2

)
= π

1
2 · 21−s · Γ(s).

Proof: Let a, b ∈ C with ℜ(a) > 0 and ℜ(b) > 0. Let

B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt.

As an aside this is known as the Beta function. This is sometimes an improper integral
(when a or b are close to 0), but this is prevented by the condition on ℜ(a) and ℜ(b).

Lemma 25.2 ∀x, y ∈ C with ℜ(x) > 0 and ℜ(y) > 0, we have that:

Γ(x) · Γ(y) = Γ(x+ y) ·B(x, y)

Proof:[25.2] Indeed, using change of variables in double integrals, we have:

Γ(x) · Γ(y) =
∫ ∞

0

∫ ∞

0
tx−1
1 ty−1

2 e−t1−t2 dt1 dt2.

Now let t1 = ut, t2 = u(1−t) such that (t1, t2)⇝ (u, t). t1, t2 ∈ [0,∞), so u ∈ [0,∞), t ∈
[0, 1]. Calculating the determinant of the Jacobian we have:∣∣∣∣∣∣

∂t1
∂u

∂t1
∂t

∂t2
∂u

∂t2
∂t

∣∣∣∣∣∣ =
∣∣∣∣∣ t u
1− t −u

∣∣∣∣∣ = −u.
Then using the fact that dt1 dt2 =

∣∣det(Jac)∣∣ du dt we have that:

Γ(x) · Γ(y) =
∫ ∞

0

∫ 1

0
ux−1+y−1e−utx−1(1− t)y−1 · ududt

=

(∫ ∞

0
ux+y−1e−u du

)
·

(∫ 1

0
tx−1(1− t)y−1 dt

)
= Γ(x+ y) ·B(x, y).
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Now let ℜ(s) > 0. Then:

Γ(s) · Γ(s)
Γ(2s)

= B(s, s)

=

∫ 1

0
us−1(1− u)s−1 du

(sub u = 1
2 + x

2 ) = 21−2s

∫ 1

−1
(1 + x)s−1(1− x)s−1 dx

= 21−s

∫ 1

−1
(1− x2)s−1 dx

(even function) = 2 · 21−s

∫ 1

0
(1− x2)s−1 dx

(sub t = x2) = 21−2s

∫ 1

0
(1− t)s−1t−

1
2 dt

= 21−2s ·B
(
1
2 , s
)

= 21−2s ·
Γ
(
1
2

)
· Γ(s)

Γ
(
s+ 1

2

) .

⇓

Γ(s) · Γ
(
s+ 1

2

)
= 21−2s · Γ

(
1
2

)
· Γ(2s). (25.1)

Using theorem (21.4), we have that, by letting s = 1
2 , (Γ(

1
2))

2 = π =⇒ Γ(12) =
√
π.

Thus, letting s = s
2 in (25.1), we have that:

Γ

(
s

2

)
· Γ
(
s+ 1

2

)
= π

1
2 · 21−s · Γ(s).

Recalling that ℜ(s) > 0, and thus that ℜ( s2) > 0, then the claim is proven.

25.2 Functional Equation 2

Recall the functional equation for the Riemann Zeta Function:

ζ(s) = 2s · πs−1 · sin
(
πs

2

)
· Γ(1− s) · ζ(1− s).

25.2.1 The Xi Function

We will find a second formulation of this. First we define the Riemann Xi Function.
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Definition 25.3 (Riemann Xi Function) We define the Riemann Xi Function
ξ(s) as:

ξ(s) := π−
s
2 · Γ

(
s

2

)
· ζ(s).

This is clearly meromorphic in C.

Theorem 25.4 ξ only has simple poles at s = 0 and s = 1, and theorem (24.1) is
equivalent to:

ξ(s) = ξ(1− s) ∀s ∈ C.

To prove this we apply theorem (25.1).
Proof: Note that:

ξ(s) = π−
s
2 · Γ

(
s

2

)
· ζ(s),

and that

ξ(1− s) = π
−1+s

2 · Γ
(
1− s
2

)
· ζ(1− s).

Then we want to see if equality of these two statements is equivalent to theorem (24.1).
Thus we let ξ(s) = ξ(1− s). Noting that:

Γ

(
s

2

)
· Γ
(
1− s

2

)
=

π

sin
(
πs
2

) .
⇓

1

Γ
(
s
2

) =
Γ
(
1− s

2

)
· sin

(
πs
2

)
π

.

And that, letting s = 1− s in theorem (25.1), we have:

Γ

(
1− s
2

)
· Γ
(
1− s

2

)
= π

1
2 · 2s · Γ(1− s).

Then we have that:

ζ(s) = πs−
1
2 ·

Γ(1−s
2 )

Γ( s2)
· ζ(1− s)

= πs−
3
2 · sin

(
πs

2

)
· Γ
(
1− s
2

)
· Γ
(
1− s

2

)
· ζ(1− s)

= πs−1 · 2s · sin
(
πs

2

)
· Γ (1− s) · ζ(1− s).

25-3



Lecture 25: November 26

Which is the Functional Equation for the Riemann Zeta Function. Thus:

functional equation for ξ =⇒ functional equation for ζ

The converse follows by the exact same steps in the reverse order. Thus:

functional equation for ξ ⇐⇒ functional equation for ζ

And the claim has been proven.

Corollary 25.5 The only zeroes of ζ outside of the “critical strip” { 0 ≤ ℜ(s) ≤ 1 } are
simple zeroes at s ∈ {−2,−4,−6, · · · }.

Proof: By corollary (23.3) we have that ζ(s) ̸= 0 for ℜ(s) > 1. We now need to check
only on the other side of this strip.
Assume that ℜ(s) < 0. We use the functional equation for ξ. Then:

ξ(s) = π−
s
2 · Γ

(
s

2

)
· ζ(s) = π

−1+s
2 · Γ

(
1− s
2

)
· ζ(1− s) = ξ(1− s).

Then for each term:

ζ(1− s) : Since ℜ(s) < 0, ℜ(1− s) > 1. Thus ζ(1− s) ̸= 0.

πz : πz = ez·log(π) ̸= 0. Thus π−
s
2 ̸= 0 and π

−1+s
2 ̸= 0.

Γ
(
1−s
2

)
: Γ(s) has no zeroes, and has simple poles at s ∈ { 0,−1,−2, · · · }. It follows that

Γ
(
1−s
2

)
is holomorphic and non-zero for ℜ(s) < 0.

Γ
(
s
2

)
: Similarly, Γ

(
s
2

)
is non-zero and has simple poles at s ∈ { 0,−2,−4, · · · }. Note that

s ̸= 0 since we assume that ℜ(s) < 0.

Thus:

ζ(s) =
π

−1+s
2 · Γ

(
1−s
2

)
· ζ(1− s)

π−
s
2︸ ︷︷ ︸

holomorphic and non-zero

· 1

Γ
(
s
2

)︸ ︷︷ ︸
0 at
−2N

And thus the claim is proven.

We can thus conclude that ζ has only the trivial zeroes on the left of the critical strip,
none on the right of it, and a mysterious amount in the critical strip.
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−2−4−6

1
2

In fact there are infinite zeroes in the critical strip (a non-obvious fact). The relation-
ship between ζ(s) and ζ(1 − s) in the functional equation, a reflection across the line
ℜ(s) = 1

2 , prompted Riemann to conjecture that every zero of ζ lies on the line ℜ(s) = 1
2 .

25.2.3 The Riemann Hypothesis

One of the best-known conjectures is the Riemann Hypothesis.

Hypothesis 25.6 (Riemann) All zeroes of ζ in the critical strip { s ∈ C | 0 ≤ ℜ(s) ≤ 1 }
lie on the line { s ∈ C | ℜ(s) = 1

2 }.

This is a very important problem in math, mostly because of its relation with prime
numbers, which we barely scratched.

Remark 25.7 While it is tempting to attempt to prove or disprove this hypothesis using
only the methods of this class, it is very unlikely that there is one. Any proof will likely
involve much more advanced techniques. We know that there are infinite zeroes on the
critical line ℜ(s) = 1

2 , but not whether there are any off of it. Using computer techniques,
we have found many zeroes of ζ; so far all are on the critical line.
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We now finally prove the functional equation for ξ. First we start with several pre-
liminary results.

26.1 Functional Equation 3

Let f : R → C a smooth function that decays at least quadratically at ∞, so that∑∞
n=−∞ f(θ + n) converges ∀θ ∈ R. Then recall that the Fourier transform of this

function, for all ξ ∈ R, is:

f̂(ξ) :=

∫ ∞

−∞
e−2πixξf(x) dx.

This integral converges since e−2πixξ has modulus 1, and since f(x) decays quadratically.

Proposition 26.1 (Poisson Summation Formula) Let f be a function that has a
defined Fourier transform. Then ∀θ ∈ R:

∞∑
n=−∞

f(θ + n) =
∞∑

n=−∞
f̂(n) · e2πinθ.

Proof: Let θ ∈ R. Let ψ(θ) :=
∑∞

n=−∞ f(n + θ). ψ : R → C is smooth, and has the
property that ψ(θ + 1) = ψ(θ). We use without proof that we can write ψ as a Fourier
Series:

ψ(θ) =

∞∑
n=−∞

cn · e2πinθ,
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where

cn =

∫ 1

0
ψ(θ) · e−2πinθ dθ

=

∫ 1

0

∞∑
k=−∞

f(k + θ) · e−2πinθ dθ

=

∞∑
k=−∞

∫ 1

0
f(k + θ) · e−2πinθ dθ

(change var θ → θ + k) =

∞∑
k=−∞

∫ k+1

k
f(θ) · e−2πinθ dθ

=

∫ ∞

−∞
f(θ) · e−2πinθ dθ

= f̂(n).

Thus we have that:

∞∑
n=−∞

f(n+ θ) = ψ(n) =

∞∑
n=−∞

f̂(n) · e2πinθ.

And we are done.

26.1.1 The Theta Function

Definition 26.2 (Theta Function) We define, for u ∈ (0,∞) ⊂ R, the theta func-
tion as:

θ(u) =

+∞∑
n=−∞

e−πn2u.

The summand decays to 0 super-exponentially fast, and thus this infinite sum converges.
Recall the definition of ξ:

ξ(s) := π−
s
2 · Γ

(
s

2

)
· ζ(s).

Lemma 26.3 For ℜ(s) > 1 we can write:

ξ(s) =
1

2

∫ ∞

0
u

s
2
−1
(
θ(u)− 1

)
du.

Note 26.4 Notice that this definition is similar to the Gamma Function. The θ(u)− 1
takes the role of the e−t in the definition of Γ, while the u

s
2
−1 is some slightly different

power of the u that we find in the definition of Γ.
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Proof:[26.3] We first note that

θ(u) =

+∞∑
n=−∞

e−πn2u = 2 ·
∞∑
n=1

e−πn2u + 1.

=⇒
∞∑
n=1

e−πn2u =
θ(u)− 1

2
.

Notice that for n ̸= 0 (otherwise the change of variable is not well-defined), using the
change of variable t = πn2u, du = dt

πn2 we have:∫ ∞

0
e−πn2u · u

s
2
−1 du =

(∫ ∞

0
e−tt

s
2
−1 dt︸ ︷︷ ︸

Γ( s
2)

)
·
(
πn2

)− s
2

= Γ

(
s

2

)
· π−

s
2 · n−s.

Then summing
∑∞

n=1 yields:

ξ(s) = Γ

(
s

2

)
· π−

s
2 ·

∞∑
n=1

n−s =

∫ ∞

0

( ∞∑
n=1

e−πn2u

︸ ︷︷ ︸
θ(u)−1

2

)
· u

s
2
−1 du

=
1

2

∫ ∞

0
u

s
2
−1
(
θ(u)− 1

)
du.

And we are done.

Proposition 26.5 For all u > 0 we have

θ
(
1
u

)
= u

1
2 · θ(u).

Proof: We wish to show, for all u > 0, that:

θ(u) =
+∞∑

n=−∞
e−πn2u = u−

1
2

+∞∑
n=−∞

e−π n2

u = u−
1
2 · θ

(
1
u

)
.

We apply proposition (26.1). Consider the special case θ = 0 in the formula, which
yields:

∞∑
n=−∞

f(n) =
∞∑

n=−∞
f̂(n).

We let f(x) = e−πux2
, with u > 0. Then recall that we found in example (6.4) that:∫ ∞

−∞
e−πx2

e−2πixξ dx = e−πξ2 .
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Then change variable, letting y = x√
u
. Then:∫ ∞

−∞
e−πx2

e−2πixξ dx =
√
u

∫ ∞

−∞
e−πuy2e−2πiyξ

√
u dy.

Renaming ξ
√
u −→ ξ and y −→ x yields:

f̂(ξ) =

∫ ∞

−∞
e−πux2

e−2πixξ dx =
1√
u
e−π ξ2

u .

Then applying proposition (26.1) for f(x) = e−πux2
gives that:

θ(u) =

∞∑
n=−∞

e−πun2 PSF
=

1√
u

∞∑
n=−∞

e−π n2

u = u−
1
2 · θ

(
1
u

)
.

And we are done.

Remark 26.6 We can rewrite proposition (26.5) as (for u > 0):

θ(u)− 1

2
= u−

1
2 ·

θ
(
1
u

)
− 1

2
+

1

2u
1
2

− 1

2
.

We now finally prove the functional equation for ξ.

Proof:[24.1] By lemma (26.3) we write:

ξ(s) =

∫ ∞

0
u

s
2
−1

(
θ(u)− 1

2

)
du

=

∫ 1

0
u

s
2
−1

(
θ(u)− 1

2

)
du+

∫ ∞

1
u

s
2
−1

(
θ(u)− 1

2

)
du

(rmk (26.6)) =

∫ 1

0
u

s
2
−1

(
u−

1
2 ·

θ
(
1
u

)
− 1

2
+

1

2u
1
2

− 1

2

)
du+

∫ ∞

1
u

s
2
−1

(
θ(u)− 1

2

)
du.

We consider each part of the left integral:∫ 1

0
u

s
2
−1

(
u−

1
2 ·

θ
(
1
u

)
− 1

2
+

1

2u
1
2

− 1

2

)
du =

∫ 1

0
u

s
2
−1

(
u−

1
2 ·

θ
(
1
u

)
− 1

2

)
du 1

+

∫ 1

0
u

s
2
−1

(
1

2u
1
2

)
du 2

−
∫ 1

0
u

s
2
−1

(
1

2

)
du 3

then we solve each individually.
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1 : We use the change of variable v = 1
u , dv = − 1

u2 du.∫ 1

0
u

s
2
−1

(
u−

1
2 ·

θ
(
1
u

)
− 1

2

)
du =

∫ ∞

1
v−

s
2
+1 · v

1
2 · θ(v)− 1

2
· v−2 dv

=

∫ ∞

1
v−

s
2
− 1

2 · θ(v)− 1

2
dv.

Note that this is almost exactly the same as the second part of the integral above.

2 : This is straightforward to compute.∫ 1

0
u

s
2
−1

(
1

2u
1
2

)
du =

1

2

∫ 1

0
u

s
2
− 3

2 du

=
1

s− 1
.

3 : This is also straightforward. ∫ 1

0
u

s
2
−1

(
1

2

)
du =

1

s
.

Thus we have, for ℜ(s) > 1, that:

ξ(s) =

∫ ∞

1
u−

s
2
− 1

2 · θ(u)− 1

2
du+

1

s− 1
− 1

s
+

∫ ∞

1
u

s
2
−1

(
θ(u)− 1

2

)
du

=

∫ ∞

1

(
θ(u)− 1

2

)(
u−

s
2
− 1

2 + u
s
2
−1
)
du+

1

s− 1
− 1

s
.

Clearly 1
s−1 −

1
s is meromorphic with simple poles at s = 0 and s = 1. Then note that∫∞

1

(
θ(u)−1

2

)(
u−

s
2
− 1

2 + u
s
2
−1
)
du is an entire function of s. The logic here is the same

as the logic used in the proof of theorem (22.3), where it was shown that
∫∞
1

ts−1

et−1 dt is
an entire holomorphic function in s.

Hence we have found the meromorphic extension of ξ on C (with simple poles at
0, 1). Furthermore, the RHS of this formula is symmetric under (s ↔ 1 − s). Thus
ξ(s) = ξ(1− s), and we have proven that the functional equation for ξ holds.

26.1.3 Locations of zeroes of Riemann Zeta

We finish by proving the non-vanishing of ζ on the boundary of the critical strip
{ z ∈ C | 0 ≤ ℜ(z) ≤ 1 }.

Theorem 26.7 If ℜ(s) = 0 or ℜ(s) = 1, then ζ(s) ̸= 0.
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Note 26.8 s = 1 is a pole of ζ, so it is not defined at it, but in any case it is certainly
not a zero.

Proof:[26.7] First assume that we have proved the theorem for ℜ(s) = 1. Let ℜ(s) = 0.
Then ℜ(1 − s) = 1. Then we apply the functional equation ζ(s) = 2s · πs−1 · sin

(
πs
2

)
·

Γ(1− s) · ζ(1− s). 2s ̸= 0, πs−1 ̸= 0, and Γ(1− s) ̸= 0. ζ(1− s) ̸= 0 by the assumption
that we already proved the statement for ℜ(s) = 1. sin

(
πs
2

)
only vanishes (for ℜ(s) = 0)

at s = 0, but ζ(1) is a pole, and cancels it out (that is to say that sin
(
πs
2

)
· ζ(1) ̸= 0).

It follows that ζ(s) ̸= 0 on the line ℜ(s) = 0.
Now let ℜ(s) = 1. We introduce two lemmas.

Lemma 26.9 Fix the principal branch of log(z) on ℜ(z) > 0. Then for ℜ(s) > 1, we
have:

log
(
ζ(s)

)
=

∞∑
n=0

cn · n−s where cn ≥ 0.

Taking the log of ζ(s) is okay, since ζ(s) ̸= 0 for ℜ(s) > 1.

Proof: This follows from Euler’s Product Formula. Noting that for |z| < 1:

log

(
1

1− z

)
=

∞∑
m=1

zm

m

we have that:

log
(
ζ(s)

)
= log

( ∏
p prime

1

1− p−s

)

=
∑
p

log

(
1

1− p−s

)

=
∑
p

∞∑
m=1

p−ms

m

=

∞∑
n=1

cn · n−s,

with cn =

{
1
m if n = pm, p prime,

0 otherwise.

Notably, cn ≥ 0, and thus we are done.

Lemma 26.10 Let s = σ + it, with σ = ℜ(s) > 1. Then:

log
∣∣∣ζ3(σ) · ζ4(σ + it) · ζ(σ + 2it)

∣∣∣ ≥ 0.
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Proof: Note that:

log
∣∣∣ζ3(σ) · ζ4(σ + it) · ζ(σ + 2it)

∣∣∣ = 3 log
∣∣ζ(σ)∣∣

+ 4 log
∣∣ζ(σ + it)

∣∣
+ log

∣∣ζ(σ + 2it)
∣∣

= 3ℜ
(
log(ζ(σ))

)
+ 4ℜ

(
log(ζ(σ + it))

)
+ ℜ

(
log(ζ(σ + it))

)
.

But then note that:

ℜ(ζ(s)) =
∞∑
n=1

ℜ
(
n−s

)
=

∞∑
n=1

ℜ
(
e−(σ+it) log(n)

)
=

∞∑
n=1

ℜ
(
e−σ log(n) · e−it log(n)

)
=

∞∑
n=1

n−σ cos(t log(n)).

Now if we let θn = t log(n), we have that, by lemma (26.9), that:

log
∣∣∣ζ3(σ) · ζ4(σ + it) · ζ(σ + 2it)

∣∣∣ = ∞∑
n=1

cn · n−σ
(
3 + 4 cos (θn) + cos (2θn)

)
=

∞∑
n=1

cn · n−σ2 ·
(
1 + cos(θn)

)2
≥ 0.

Where the last equality comes from the fact that cos (2θn) = 2 cos2(θn)− 1.
Now suppose for a contradiction that ζ has a zero on {ℜ(s) = 1 }. That is to say that

ζ(1 + it0) = 0 for some t0 ∈ R. Certainly then t0 ̸= 0, since ζ has a pole at s = 1.

Consider
∣∣ζ(σ + it0)

∣∣4. Then by assumption, ζ(σ + it0) vanishes as σ → 1+. Thus as
σ → 1+ we have that: ∣∣ζ(σ + it0)

∣∣4 ≤ C(σ − 1)4.

Now consider
∣∣ζ(σ)∣∣3. Similarly, since ζ(1) is a simple pole, we have that as σ → 1+:

∣∣ζ(σ)∣∣3 ≤ C

(σ − 1)3
.
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Finally, consider
∣∣ζ(σ + 2it)

∣∣. We know that this point is not a pole since t0 ̸= 0. Thus
as σ → 1+ we have that: ∣∣ζ(σ + 2it)

∣∣ ≤ C.
All together, we have that:∣∣∣ζ3(σ) · ζ4(σ + it) · ζ(σ + 2it)

∣∣∣ ≤ C(σ − 1)
σ→1+−−−−→ 0.

Thus:

log
∣∣∣ζ3(σ) · ζ4(σ + it) · ζ(σ + 2it)

∣∣∣ σ→1+−−−−→ −∞.

Which is a clear contradiction to lemma (26.10). Thus we are done.
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