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Generating Functions

Enumerative combinatorics is about studying sequences.

Generating functions are a powerful tool.

Definition (Generating Functions)

The generating function of the sequence {an}n≥0 is

A(z) =
∑
n≥0

anz
n.

We care about asymptotics instead of exact values.

We can use this framework to count lattice walks!
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Lattice Walks

Definition (Lattice Walk Model)

A d-dimensional lattice walk model consists of:

- a step set S ⊆ Zd ,

- a restricting region R ⊆ Zd ,

- a starting point p ∈ R,

- a terminal set T ⊆ R.

A walk in this lattice walk model consists of a walk that starts at
p, stays in R at all times, ends at T , and takes steps using S .

We always let p = 0 and T = R.
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Lattice Walks

Main Question

Given a step set S and a restricting region R, how many lattice
walks of length n are there using S?

Reformulated in generating function language:

Main Question

Given a step set S and a restricting region R, let sn be the number
of lattice walks of length n using S and staying in R.

What is the coefficient of zn in S(z) =
∑

n≥0 snz
n?
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Unrestricted Walks

If R = Zd this is easy.

Unrestricted NSEW steps

Let S = {(±1, 0), (0,±1)} and R = Z2.

Then there are 4 possible steps to take at each time. Thus there
are 4n walks of length n using S .

In general:

Unrestricted Walks

There are |S |n unrestricted lattice walks of length n using S .
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Halfspace Walks

Unrestricted walks are simple. What about other domains?

Definition (Halfspaces)

Zd−1 × N is a halfspace.

Let S be any step set and R = Zd−1 ×N be a halfspace. Let sn be
number of walks.

It turns out S(z) =
∑

n≥0 snz
n is algebraic.

This means finding asymptotics for sn is automatic.
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Orthant Walks

Asymptotics for sn is automatic for halfspaces. What other
domains are there?

Definition (Orthants)

Nd is an orthant.

This models queues (since negative people does not make sense).

This is too hard in general. How do we fix this? Restricting S .
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Highly Symmetric Step Sets

We enforce small steps.

Let S ⊆ {−1, 0, 1}d \ 0.

Define

S(z) = S(z1, · · · , zd) =
∑
s∈S

zs =
∑
s∈S

zs11 · · · zsdd .

Example

If S = {(±1, 0), (0,±1), (1, 1)}

S(z1, z2) = z1 +
1

z1
+ z2 +

1

z2
+ z1z2
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Highly Symmetric Step Sets

We also enforce some amount of symmetry.

Definition (Highly Symmetric Step Sets)

A step set S is highly symmetric if

S(z1, · · · , zj , · · · , zd) = S

(
z1, · · · ,

1

zj
, · · · , zd

)

for all 1 ≤ j ≤ d .
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Highly Symmetric Step Sets

Asymptotics for highly symmetric step sets is known.

Theorem (Melczer Mishna 2016 [MM16])

Suppose S is a highly symmetric step set. If sn is the number of
walks of length n using S that remains in Nd then

sn ∼

[
|S |d/2

πd/2(a1 · · · ad)1/2

]
· |S |

n

nd/2
,

where aj is the number of steps in S that have j-th coordinate 1.
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Mostly Symmetric Step Sets

Being highly symmetric is very restrictive.

Definition (Mostly Symmetric Step Sets)

A step set S is mostly symmetric if

S(z1, · · · , zj , · · · , zd) = S

(
z1, · · · ,

1

zj
, · · · , zd

)

for all 1 ≤ j < d .

This means we can write

S(z) =
1

zd
A(z1, · · · , zd−1) + Q(z1, · · · , zd−1) + zdB(z1, · · · , zd−1)

where A,Q,B are all highly symmetric.
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Mostly Symmetric Step Sets

Asymptotics depend on what the average direction of a step is.

Definition (Drift)

We say that

• S has positive drift if B(1)− A(1) > 0,

• S has negative drift if B(1)− A(1) < 0,

• S has zero drift if B(1)− A(1) = 0.

Asymptotics for the positive and negative case are known.
Asymptotics for the zero drift case is open.
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Positive Drift Asymptotics

Theorem (Melczer Wilson [MW19])

If S is mostly symmetric with positive drift then

sn ∼

[(
1− A(1)

B(1)

)
S(1)d/2

(2π)d/2
· 1

(a1 · · · ad)1/2

]
· S(1)n

nd/2−1/2
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Negative Drift Asymptotics

Theorem (Melczer Wilson [MW19])

If S is mostly symmetric with negative drift and Q(z) ̸= 0 then

sn ∼ Cρ ·
S(1, ρ)n

nd/2+1
.

If S is mostly symmetric with negative drift and Q(z) = 0 then

sn ∼ Cρ ·
S(1, ρ)n

nd/2+1
+ C−ρ ·

S(1,−ρ)n

nd/2+1
.

Where ρ, Cρ, and C−ρ are explicit constants.
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Proof Overview

How is this done?
Through analytic combinatorics in several variables (ACSV).

ACSV can find asymptotics of sequences encoded by multivariate
rational functions.

Proof Outline

• Use kernel method to find GF for sn in terms of higher
dimensional rational function.

• Characterize singularities of this rational function.

• Use ACSV to reduce to asymptotic behaviour of∫
A(z) exp

[
−nϕ(z)

]
dz.

• Approximate integral using saddle-point method.

16 / 20



Proof Overview

How is this done?
Through analytic combinatorics in several variables (ACSV).

ACSV can find asymptotics of sequences encoded by multivariate
rational functions.

Proof Outline

• Use kernel method to find GF for sn in terms of higher
dimensional rational function.

• Characterize singularities of this rational function.

• Use ACSV to reduce to asymptotic behaviour of∫
A(z) exp

[
−nϕ(z)

]
dz.

• Approximate integral using saddle-point method.

16 / 20



Proof Overview

How is this done?
Through analytic combinatorics in several variables (ACSV).

ACSV can find asymptotics of sequences encoded by multivariate
rational functions.

Proof Outline

• Use kernel method to find GF for sn in terms of higher
dimensional rational function.

• Characterize singularities of this rational function.

• Use ACSV to reduce to asymptotic behaviour of∫
A(z) exp

[
−nϕ(z)

]
dz.

• Approximate integral using saddle-point method.

16 / 20



Proof Overview

How is this done?
Through analytic combinatorics in several variables (ACSV).

ACSV can find asymptotics of sequences encoded by multivariate
rational functions.

Proof Outline

• Use kernel method to find GF for sn in terms of higher
dimensional rational function.

• Characterize singularities of this rational function.

• Use ACSV to reduce to asymptotic behaviour of∫
A(z) exp

[
−nϕ(z)

]
dz.

• Approximate integral using saddle-point method.

16 / 20



Proof Overview

How is this done?
Through analytic combinatorics in several variables (ACSV).

ACSV can find asymptotics of sequences encoded by multivariate
rational functions.

Proof Outline

• Use kernel method to find GF for sn in terms of higher
dimensional rational function.

• Characterize singularities of this rational function.

• Use ACSV to reduce to asymptotic behaviour of∫
A(z) exp

[
−nϕ(z)

]
dz.

• Approximate integral using saddle-point method.

16 / 20



Proof Overview

How is this done?
Through analytic combinatorics in several variables (ACSV).

ACSV can find asymptotics of sequences encoded by multivariate
rational functions.

Proof Outline

• Use kernel method to find GF for sn in terms of higher
dimensional rational function.

• Characterize singularities of this rational function.

• Use ACSV to reduce to asymptotic behaviour of∫
A(z) exp

[
−nϕ(z)

]
dz.

• Approximate integral using saddle-point method.

16 / 20



Proof Overview

How is this done?
Through analytic combinatorics in several variables (ACSV).

ACSV can find asymptotics of sequences encoded by multivariate
rational functions.

Proof Outline

• Use kernel method to find GF for sn in terms of higher
dimensional rational function.

• Characterize singularities of this rational function.

• Use ACSV to reduce to asymptotic behaviour of∫
A(z) exp

[
−nϕ(z)

]
dz.

• Approximate integral using saddle-point method.
16 / 20



Zero Drift

Why does this approach fail for zero drift?

At the singularity determining asymptotics both the denominator
and numerator vanish. Other pathologies give an integral of the
form ∫

A(z)

z
exp

[
−nϕ(z)

]
dz .

We didn’t know how to approximate this!

Now ∼ 4 years later we have a better idea of how to approximate.
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Zero Drift Asymptotics

Theorem (K. Melczer [KMon])

Suppose S is a mostly symmetric step set with zero drift. Let sn be
the number of walks of length n using S that remain in Nd . Then

sn ∼

[
|S |d/2

πd/2(a1 · · · ad)1/2

]
· |S |

n

nd/2

where aj is the number of steps in S that have j-th coordinate 1.

This is the same as highly symmetric: two different pathologies
(vanishing and “boundary direction asymptotics” cancel).

This (sort of) finishes off all walks that can be done with ACSV.
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Conclusion

Thank you for listening.
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