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Fundamental Ideas of AC
Saddle-Point Integrals

Generating Functions

Take a sequence {an}n∈N and consider A(z) =
∑

i∈N aiz
i .

This sum is formal (we don’t evaluate it).

Analytic Combinatorics

What if we evaluate it anyway? Treat these as complex-analytic
functions (C → C).

Goal: find asymptotics of an.
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Fundamental Ideas of AC
Saddle-Point Integrals

Starting point is

Theorem (Cauchy’s Residue Theorem)

Let A(z) =
∑

n∈N anz
n. Then

an =
1

2πi

∫
C
A(z)

dz

zn+1
−
∑
j

Resz=aj

[
A(z)

zn+1

]
where C is some closed curve containing 0 and non-0 singularities
of A(z) labelled aj (and Res is some complex analytic tool that is
usually quite computable).

Idea is to expand C and pick up more and more singularities, while
the integral term vanishes.

4 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Fundamental Ideas of AC
Saddle-Point Integrals

Starting point is

Theorem (Cauchy’s Residue Theorem)

Let A(z) =
∑

n∈N anz
n. Then

an =
1

2πi

∫
C
A(z)

dz

zn+1
−
∑
j

Resz=aj

[
A(z)

zn+1

]
where C is some closed curve containing 0 and non-0 singularities
of A(z) labelled aj (and Res is some complex analytic tool that is
usually quite computable).

Idea is to expand C and pick up more and more singularities, while
the integral term vanishes.

4 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Fundamental Ideas of AC
Saddle-Point Integrals

Let an = number of alternating permutations. Then

A(z) =
∑
n≥0

an
n!

zn = tan(z).

Then

an
n!

= −Resπ
2

[
tan(z)

zn+1

]
− Res−π

2

[
tan(z)

zn+1

]
+

∫
|z|=2

tan(z)
dz

zn+1

= 2

(
2

π

)n+1

+ O(2−n) (n odd).

If we make C bigger we get more residues and smaller O term.
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What if A(z) has no singularities to exploit?

If C contains no singularities other than the origin then

an =
1

2πi

∫
C
A(z)

dz

zn+1
.

Does not depend on C (besides singularities)! We can freely
deform C (as long as we do not cross singularities).

How do we deal with this integral? Saddle points.
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Definition (Saddle Points)

A saddle point of f (z) is a point z where df (z) = 0, but z is
neither a local maximum or minimum.

Figure: Saddle Point [kos23]
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We exploit the fact that at a saddle point f (z) is
well-approximated by just the integral around the saddle point.

Idea:

1. Move contour to saddle point

2. Rewrite the integral in form
∫
C F (z) exp

[
−nϕ(z)

]
dz

3. Approximate integral

8 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Fundamental Ideas of AC
Saddle-Point Integrals

We exploit the fact that at a saddle point f (z) is
well-approximated by just the integral around the saddle point.

Idea:

1. Move contour to saddle point

2. Rewrite the integral in form
∫
C F (z) exp

[
−nϕ(z)

]
dz

3. Approximate integral

8 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Fundamental Ideas of AC
Saddle-Point Integrals

We exploit the fact that at a saddle point f (z) is
well-approximated by just the integral around the saddle point.

Idea:

1. Move contour to saddle point

2. Rewrite the integral in form
∫
C F (z) exp

[
−nϕ(z)

]
dz

3. Approximate integral

8 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Fundamental Ideas of AC
Saddle-Point Integrals

We exploit the fact that at a saddle point f (z) is
well-approximated by just the integral around the saddle point.

Idea:

1. Move contour to saddle point

2. Rewrite the integral in form
∫
C F (z) exp

[
−nϕ(z)

]
dz

3. Approximate integral

8 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Fundamental Ideas of AC
Saddle-Point Integrals

We exploit the fact that at a saddle point f (z) is
well-approximated by just the integral around the saddle point.

Idea:

1. Move contour to saddle point

2. Rewrite the integral in form
∫
C F (z) exp

[
−nϕ(z)

]
dz

3. Approximate integral

8 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Fundamental Ideas of AC
Saddle-Point Integrals

Stirling’s Approximation

We derive Stirling’s Approximation.

1

n!
= [zn]ez =

1

2πi

∫
C
ez

dz

zn+1
=

1

2πi

∫
C
ez−(n+1) log(z) dz .

Saddle point at (around) z = n. In polar coords,(
e

n

)n 1

2π

∫ π

−π
ene

iθ−1−iθ dθ ∼
(
e

n

)n 1√
2πn
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Here we are using the study of (single-variable) Fourier-like
integrals, of the form∫

γ
A(z) exp

[
−nϕ(z)

]
dz .

These integrals are deeply connected with saddle-point
techniques.

Well studied in a single variable, what about in several
variables?
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Generating Functions in Several Variables

Take a sequence {an1,n2,··· ,nd}ni∈N and consider

A(z) =
∑

n1,··· ,nd∈N
an1,··· ,nd z

n1
1 · · · zndd

=
∑
n∈Nd

anz
n

What are asymptotics of an? Not as clear now.

11 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Fundamentals of ACSV
Setup and Hyperplanes
Height Functions and Critical Points

Generating Functions in Several Variables

Take a sequence {an1,n2,··· ,nd}ni∈N and consider

A(z) =
∑

n1,··· ,nd∈N
an1,··· ,nd z

n1
1 · · · zndd

=
∑
n∈Nd

anz
n

What are asymptotics of an? Not as clear now.

11 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Fundamentals of ACSV
Setup and Hyperplanes
Height Functions and Critical Points

Solution:

Find asymptotics of

arn = ar1n,··· ,rdn = [zrn]A(z) = [z r1n1 · · · z rdnd ]A(z),

where r ∈ Nd .

If r = (3, 2), we consider the 1 dimensional subsequence a3n,2n.

This is called a direction.

From now on we normalize by dividing r by ∥r∥1.
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For the remainder of this talk we assume that our generating
function is of the form

A(z) =
1∏m

j=1 ℓj(z)
pj
,

• ℓj(z) is a real-linear function 1− b(j) · z,
• pj are natural numbers.

Let V = {z | Πm
j=1ℓj(z) = 0} = union of hyperplanes.

The set V is the singular set of A.

13 / 37
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Similar to before

arn =

(
1

2πi

)d ∫
T
A(z)

dz

zrn+1
,

where T is some product of sufficiently small circles (we can
deform this, as long as we do not cross singularities).

In one variable, we deform the circle T to Cϵ − C−ϵ, where
Cx = x + iR and the sign indicates direction.
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In several dimensions we get something similar, deforming T to∑
α∈{−1,1}d

sign(α)Cαϵ

where Cαϵ = (α1ϵ, · · · , αdϵ) + iRd .

In two complex dimensions T deforms to

C(ϵ,ϵ) − C(−ϵ,ϵ) − C(ϵ,−ϵ) + C(−ϵ,−ϵ).

15 / 37
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Definition (Strata)

A stratum is an intersection of hyperplanes with all smaller
intersections removed.
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We would like to proceed in a similar saddle-point way to
before (looking at saddle points of A(z) and deforming to
them).

This is achieved via Morse theory.

Pick a direction r = (r1, · · · , rd). Define the height function

hr(z) := −
d∑

i=1

ri log |zi |.

This captures the size of the Cauchy integrand when n is large

∣∣∣∣ 1

zrn

∣∣∣∣ = ∣∣∣∣exp [log z−rn
]∣∣∣∣ = exp

−n
d∑

i=1

ri log |zi |
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Definition (Critical Points)

Let S be a stratum. Then p ∈ S is a critical point of S (relative
to r) if

−∇hr
∣∣
S
(p) = 0.

These are our saddle points!
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Some facts:

• Exactly one of these per stratum per orthant (quadrant)

• These are always real

• For a critical point σ on a single hyperplane given by
ℓj(z) = 1− b(j)z, this is equivalent to

−∇hr(p) ∥ −∇ℓj(z)

=⇒ −∇hr(p) ∈
{
λb(j) | λ ∈ R

}

• For a critical point σ on the intersection of multiple
hyperplanes this is equivalent to

−∇hr(p) ∈

∑
j

λjb
(j) | λj ∈ R
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−∇hr(p) ∈

∑
j

λjb
(j) | λj ∈ R


What does it mean if λj > 0 or λj = 0 or λj < 0?

1. If we cross that hyperplane our height will go down

2. If we cross that hyperplane our height will stay the same

3. If we cross that hyperplane our height will go up

We want to reduce height! Height going up is counterproductive.
Define the positive normal cone at σ as

N(σ) =

∑
j

λjb
(j) | λj ≥ 0

 ,

where j runs over planes σ is on.
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Setup is finally done!

Definition (Genericity of Direction)

We say a direction is generic if for all critical points, λj > 0. We
say a direction is non-generic if some λj = 0.
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Taking Residues

If we are at a critical point, we can use the same logic used to write

T = Cϵ − C−ϵ

to write ∫
Cϵ

=

∫
T
+

∫
C−ϵ

.

∫
T is computable and if λ > 0 for this hyperplane, our remaining
integral is smaller.
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Consider A(z) = 1
(1− 2x+y

3
)(1− x+2y

3
)
with r = (1, 1). Draw critical

points Then

[zrn]A(z) =

∫
T
A(z)

dx dy

xn+1yn+1

=

∫
σ+(−ϵ,−ϵ)+iR2

A(z)
dx dy

xn+1yn+1

=

∫
Tσ

−
∫
σ+(ϵ,ϵ)+iR2

+

∫
σ+(ϵ,−ϵ)+iR2

+

∫
σ+(−ϵ,ϵ)+iR2
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Non-genericity arises when one or more λj = 0

Without λ > 0, we don’t know that
∫
C−ϵ

is smaller

• Number of λj = 0 is the number of dimensions we cannot kill
by taking residues,

• Case where exactly one of λj = 0 was already done by
Baryshnikov, Melczer, Pemantle 2023 [BMP23].
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Consider A(x , y , z) = 1
(1−2x−y−z)(1−x−2y−z)(1−x−y−2z) in the

direction r = (1, 1, 2).

σ = (14 ,
1
4 ,

1
4) is a critical point with

−∇hr(σ) = (4, 4, 8) = 0b(1) + 0b(2) + 4b(3)
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After some work

[zrn]A(z) =
1

(2πi)3

∫
σ+(−ϵ,−ϵ,−ϵ)+iR3

A(x , y , z)
dx dy dz

xn+1yn+1z2n+1

∼ 1

(2πi)2

∫
1

(y + 3z − 1)(z − y)

dy dz

(1− y − 2z)nynz2n

=
64n

(2πi)2

∫
1

AB
dA dB

(1−3A+B)n(1+A−3B)n(1+A+B)2n

∼ 64n

(2πi)2

∫
D

1

AB
exp

[
−n(6A2 − 4AB + 6B2)

]
dA dB

where D = R2 + i(ϵ, ϵ).

How to evaluate?
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We have a need to evaluate integrals like∫
R2+i(ϵ,ϵ)

1

xk1yk2
exp

[
−nϕ(x , y)

]
dx dy .

These are negative Gaussian moments!
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In the numerator case we use the Morse lemma.

Theorem

Let ϕ(0) = 0. If ϕ(x) has vanishing gradient and non-singular
Hessian at 0, there is a change of variables x = ψ(y) such that

ϕ(ψ(y)) =
∑
i

y2i .

∫
A(x) exp

[
−nϕ(x)

]
dx =

∫
A(ψ(y)) det dψ(y) exp

[
−n

∑
y2i

]
dy

Then A(ϕ(y)) det dψ(y) is a power series; use Fubini to separate
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Spent a long time trying this for denominator, does not seem to
work.

Get integrals of the form∫
R2+i(ϵ,ϵ)

1

A(x , y)
exp

[
−n(x2 + y2)

]
dx dy .

Tried a lot with∫
1

x + y
exp

[
−n(x2 + y2)

]
dx dy ,

did not get anywhere.
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In the 1-variable case we differentiate.

I (n) =

∫
1

yk
exp

[
−ny2

]
dy

=⇒ d

dn
I (n) =

∫
−1

yk−2
exp

[
−ny2

]
dy

Eventually get some positive power, which we can evaluate.

30 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Morse Lemma
Differentiation Approach
Negative Gaussian Moments

In the 1-variable case we differentiate.

I (n) =

∫
1

yk
exp

[
−ny2

]
dy

=⇒ d

dn
I (n) =

∫
−1

yk−2
exp

[
−ny2

]
dy

Eventually get some positive power, which we can evaluate.

30 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Morse Lemma
Differentiation Approach
Negative Gaussian Moments

This also does not work for us.

I (n) =

∫
1

xy
exp

[
−n(x2 + xy + y2)

]
dx dy

=⇒ d

dn
I (n) = −

∫
x2

xy
exp

[
−n(x2 + xy + y2)

]
dx dy

−
∫

xy

xy
exp

[
−n(x2 + xy + y2)

]
dx dy

−
∫

y2

xy
exp

[
−n(x2 + xy + y2)

]
dx dy

Differentiating
∫

x
y gets us nowhere!

31 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Morse Lemma
Differentiation Approach
Negative Gaussian Moments

This also does not work for us.

I (n) =

∫
1

xy
exp

[
−n(x2 + xy + y2)

]
dx dy

=⇒ d

dn
I (n) = −

∫
x2

xy
exp

[
−n(x2 + xy + y2)

]
dx dy

−
∫

xy

xy
exp

[
−n(x2 + xy + y2)

]
dx dy

−
∫

y2

xy
exp

[
−n(x2 + xy + y2)

]
dx dy

Differentiating
∫

x
y gets us nowhere!

31 / 37



Analytic Combinatorics in One Variable
Analytic Combinatorics in Several Variables

Pseudo Fourier-Laplace Integrals

Morse Lemma
Differentiation Approach
Negative Gaussian Moments

Morse lemma is inductive; first does x substitution, then y etc.

Idea: differentiate until we get positive power on top, then apply
Morse lemma to only the variable on top.
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Let

I (n) =

∫∫
1

x2y
exp

[
−n(x2 + xy + y2)

]
dx dy

I ′(n) = −
∫∫

1

y
−

∫∫
1

x
−
∫∫

y

x2

= I1(n) + I2(n) + I3(n)
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I3(n) =−
∫∫

y

x2
exp

[
−n(x2 + xy + y2)

]
dx dy

=− 1

2

∫∫
1

x
exp

[
−n(b2 + 3

4x
2)
]
dx db

=− 1

2

∫
exp

[
−n(b2)

]
db

∫
1

x
exp

[
−n(34x

2)
]
dx

=
iπ3/2

2
n−1/2

⇝ I ′(n) =
3iπ3/2

2
n−1/2

=⇒ I (n) = 3iπ3/2n1/2
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Applying same procedure gives

[zrn]A(z) ∼ 64n

(2πi)2

∫
R2+iϵ

1

AB
exp

[
−n(6A2 − 4AB + 6B2)

]
dA dB

∼ 64n

(2πi)2

√
2− 6

√
3

2
π log n

=
6
√
3−

√
2

8π
64n log n
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Conclusion

We have a method to compute these integrals

→ Simplify and theoremize

→ Apply to problems

→ Implement
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