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Figure: An Orthant Walk using the Gessel step Set
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Analytic Combinatorics in One Variable

Definition

Let an be a complex sequence. The generating function
corresponding to an is

A(z) =
∑
n≥0

anz
n.

• GFs are a powerful tool in enumerative combinatorics.

• Are amenable to (complex) analytic techniques.

• Goal of analytic techniques is almost always asymptotics.

Principles of AC

Let A(z) be a generating function with underlying sequence an.

• exponential behaviour of an ↔ location of singularities

• subexponential behaviour of an ↔ kind of singularities
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Surjections

Let gn count the number of functions that surject [n] onto a set of
the form [r ].

Then

G (z) =
∑
n≥0

gn
n!

zn =
1

2− ez
.

G (z) has singularities at {log 2 + 2πik}. The singularity with
smallest modulus is log 2, which has a simple pole. Then

gn
n!

∼ C

(
1

log 2

)n

.

Here C = 1
2 log 2 is easily computed. If H(z) = 1

(2−ez )2
then

hn
n!

∼ Cn ·
(

1

log 2

)n

.
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There are two main techniques in AC:

No. 1: Residue Theorem

Let G (z) =
∑

gnz
n be meromorphic in Dr (0) and analytic at 0.

Let ρ1, · · · , ρk be a list of all the singularities of G in Dr (0). Then

gn = −
k∑

j=1

Resz=ρj

(
G (z)

zn+1

)
+

1

2πi

∫
|z|=r

G (z)
dz

zn+1
.

Here Res is some easily computable operator.

If G (z) has no singularities we are out of luck!
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No. 2: Saddle-Point Techniques

We describe the general idea.

Suppose that G (z)z−n−1 has a critical point at z = t.

• Write as before gn = 1
2πi

∫
|z|=t G (z) dz

zn+1 ,

• (trim) show that gn ∼ 1
2πi

∫
(|z|=t)∩Bϵ(t)

G (z) dz
zn+1 ,

• (approx.) show that we can approximate∫
(|z|=t)∩Bϵ(t)

G (z)
dz

zn+1

by replacing G (z)z−n−1 by its leading terms,

• (compute) compute what’s left.
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Analytic Combinatorics in Several Variables (ACSV)

This discussion generalizes to several variables.

Multivariate GFs are natural to consider:

• can often store “less nice” single-variable GFs in “nice”
multivariate ones,

• can track multiple characteristics at once,

• strict generalization of single-variable GFs.

Same two techniques exist; must use both in conjunction.

Singular set of GF is no longer discrete, now a complex variety.

We also need a direction; we will only talk about the main
diagonal of a generating function: given F =

∑
j1,··· ,jd fj1,··· ,jdz

j we
consider ∆F =

∑
n fn,··· ,nt

n.
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We have a specialized version of the Cauchy Integral Theorem.

Theorem (CIT For Main Diagonal)

Suppose that

F (t) =
∑
n≥0

fnt
n = ∆G (z1, · · · , zd).

Then

fn =
1

(2πi)d

∫
|zj |=αj

G (z1, · · · , zd)
dz1 · · · dzd

zn+1
1 · · · zn+1

d

for αj sufficiently small for all j .
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Solution to singular variety: pick certain points on the variety that
are amenable to saddle-point analysis.

Definition (Minimal Critical Points)

Suppose that F = G/H. Then z is a smooth critical point of F
if Hz1(z) ̸= 0 and it is a solution to the system of equations

H(z) = 0, z1Hz1(z) = · · · = zdHzd (z).

z is furthermore minimal if there is no w such that H(w) = 0 and
|wj | < |zj | for all j .

Our analysis depends on finding minimal critical points.
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Central Binomial Coefficients

Consider

F (x , y) =
1

1− x − y
=
∑
j ,k≥0

(
j + k

j

)
x jyk .

Then V = {x , y ∈ C | x + y = 1} and the CP equations are

1−x−y=0
−x=−y =⇒ unique minimal CP is (1/2, 1/2).

(
2n

n

)
=

1

(2πi)2

∫
|x |=1/2

|y |=1/2−ϵ

1

1− x − y

dxdy

xn+1yn+1

∼ 1

2πi

∫
|x |=1/2

arg(x)∈(−π/4,π/4)

dx

xn+1(1− x)n+1

∼ 4n

2π

∫ π/4

−π/4

1

1− e it/2
e−n(log(2−e it)+it)dt ∼ 4n√

πn
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Lattice Walk Setup

We can use these techniques to find asymptotics of lattice walk
models.

Definition (Lattice Walk Model)

A d-dimensional weighted short-step lattice walk model
consists of:

- a step set S ⊆ {−1, 0,+1}d \ {(0, · · · , 0)},
- a restricting region R ⊆ Zd ,

- a starting point p ∈ R,

- a terminal set T ⊆ R,

- a weight ωs > 0 for each s ∈ S (if unspecified ωs = 1).

A walk in this lattice walk model consists of a walk that starts at
p, stays in R at all times, ends at T , and takes steps using S .

We always let p = 0 and T = R.
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We want a convenient way to store S .

Definition (characteristic polynomial)

The characteristic polynomial of a step set S is

S(z) =
∑
s∈S

ωsz
s =

∑
s∈S

ωsz
s1
1 · · · zsdd

Notation

We write z to mean z−1.

Kreweras Step Set

Let S = {(−1, 0), (0,−1), (1, 1)}. This is the Kreweras step set.

Then S(x , y) = x + y + xy .
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What are good choices for restricting regions?

Most obvious is R = Zd (so-called unrestricted walks). These are
too easy!

Also natural is R = Zd−1 × N (so-called half-space walks). The
GFs for these walks are algebraic and thus asymptotics are
automatic.

Another natural restricting region is R = Nd (orthant walks). We
consider this region.

Note that a d-dimensional orthant walk encodes a multiqueue
system with d queues: each point of Nd gives the number of
people in each queue.

13 / 31
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In the pre-seminar we saw how to use the kernel method to get a
GF for orthant walks using NSEW steps.

Let S = {(±1, 0), (0,±1).

Let fn be the number of orthant walks using S of length n.

Then

F (t) =
∑
n≥0

fnt
n = ∆

(
(1 + x)(1 + y)

1− txyS(x , y)

)
.

For arbitrary step sets the argument we used does not generalize.

If S is mostly symmetric it does.
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Definition (Symmetric Step Sets)

• A step set S is mostly symmetric if

S(z1, · · · , zd) = S(z1, · · · , z j , · · · , zd) 1 ≤ j ≤ d − 1,

meaning S is unchanged if flipped over any of the first d − 1
axes.

If this is the case we can write

S(z) = zdA(ẑ) + Q(ẑ) + zdB(ẑ)

where ẑ = (z1, · · · , zd−1) and A,Q,B are highly symmetric.

• A step set S is highly symmetric if it is mostly symmetric
and also S(z1, · · · , zd) = S(z1, · · · , zd). This is equivalent to
the condition A(ẑ) = B(ẑ).

Notation

We also write S(z) = zdA(ẑ) + Q(ẑ) + zdB(ẑ).
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Theorem (Melczer Wilson [MW19])

Let S be a mostly symmetric short-step step set. If fn is the
number of orthant walks of length n using S then

F (t) =
∑
n≥0

fnt
n = ∆

(
(1 + z1) · · · (1 + zd−1)

(
B(ẑ)− z2dA(ẑ)

)
(1− zd)B(ẑ)(1− tz1 · · · zdS(z))

)
.

Proof.

Use the kernel method.

There are 4 different cases to consider.
These will be demonstrated by example.
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Highly Symmetric Step Set Asymptotics

In the simplest case where S is highly symmetric, this reduces to

F (t) =
∑
n≥0

fnt
n = ∆

(
(1 + z1) · · · (1 + zd)

1− tz1 · · · zdS(z)

)
.

NSEW Steps

Consider

F (x , y , t) =
G (x , y , t)

H(x , y , t)
=

(1 + x)(1 + y)

1− txyS(x , y)

where S(x , y) = x + x + y + y .

This has two minimal CPs:
σ− = (−1,−1,−1/4) and σ+ = (1, 1, 1/4). Since G vanishes at
(−1,−1) then σ+ determines dominant asymptotics.
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NSWE Steps cont.

CIT implies that

fn ∼ 1

(2πi)3

∫
|x |=1
|y |=1

(∫
|t|=1/4−ϵ

(1 + x)(1 + y)

1− txyS(x , y)

dt

tn+1

)
dxdy

xn+1yn+1

∼ 1

(2πi)2

∫
N

(1 + x)(1 + y)

xy
S(x , y)ndxdy

∼ 4n

(2π)2

∫
K
4e−n(x2/4+y2/4)dxdy

∼ 4

π
· 4

n

n
.
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The techniques in this example generalize to arbitrary highly
symmetric step sets.

Theorem (Melczer Mishna 2016 [MM16])

Suppose S is a highly symmetric step set. If sn is the number of
walks of length n using S that remains in Nd then

sn ∼

[
S(1)d/2

πd/2(a1 · · · ad)1/2

]
· S(1)

n

nd/2
,

where aj is the number of steps in S that have j-th coordinate 1.

Cardinal Directions

If S = {±e1, · · · ,±ed} then

sn ∼

[
(2d)d/2

πd/2

]
· (2d)

n

nd/2
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Mostly Symmetric Step Set Asymptotics - Setup

In the mostly symmetric case we don’t have B = A and so can’t
cancel.

Furthermore in the expression

(1 + z1) · · · (1 + zd−1)
(
B(ẑ)− z2dA(ẑ)

)
(1− zd)B(ẑ)(1− tz1 · · · zdS(z))

the factor of B in the denominator behaves uncontrollably. Instead
we write F (t) as the diagonal of

(1 + z1) · · · (1 + zd−1)
(
1− tz1 · · · zd(Q(ẑ) + 2zdA(ẑ))

)
(1− zd)(1− tz1 · · · zdS(z))(1− tz1 · · · zd(Q(ẑ) + zdA(ẑ)))

.

This looks awful, but it’s easier to deal with the denominator.
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B(ẑ)− z2dA(ẑ)

)
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We have one last important distinction to make.

Definition

Let S be a mostly symmetric (and not highly symmetric) step set.

• S has negative drift if A(1) > B(1),

• S has positive drift if A(1) < B(1),

• S has zero drift if A(1) = B(1).

We can view this as a condition on the vector sum
∑

ωss ∈ Z. If
this sum is positive S has positive drift etc.

In each of the different cases the singular variety is differently
positioned, and so the asymptotics change.
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Mostly Symmetric Step Set Asymptotics - Negative Drift

The second simplest case is negative drift mostly symmetric.

Negative Drift

Let S = {(−1,−1), (1,−1), (0, 1)}. Then the GF is the diagonal of

(1 + x)(1− 2t(x2y2 + 1))

(1− y)(1− t(x2y2 + y2 + x))(1− t(x2y2 + 1))
.

There are now four minimal critical points

(1, 1/
√
2, 1/2), (1,−1/

√
2, 1/2), (−1,±i/

√
2,−1/2).

The numerator vanishes at the last two CPs, implying that the first
two give dominant asymptotics. Only one factor of the
denominator vanishes (the “smooth” case). We have

sn ∼ 16 + 12
√
2

π
· (2

√
2)n

n2
+

−16 + 12
√
2

π
· (−2

√
2)n

n2
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In general we have the following.

Theorem (Melczer Wilson [MW19])

If S is mostly symmetric with negative drift and Q(z) ̸= 0 then

sn ∼ Cρ ·
S(1, ρ)n

nd/2+1
.

If S is mostly symmetric with negative drift and Q(z) = 0 then

sn ∼ Cρ ·
S(1, ρ)n

nd/2+1
+ C−ρ ·

S(1,−ρ)n

nd/2+1
.

Where ρ, Cρ, and C−ρ are explicit constants.
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Mostly Symmetric Step Set Asymptotics - Positive Drift

In the positive drift case we encounter CPs that lie on the
intersection of two factors of the denominator.

Positive Drift

Let S = {(−1, 1), (1, 1), (0,−1)}. Then the GF is the diagonal of

F (x , y , t) =
(1 + x)(1− 2txy2)

(1− y)(1− t(xy2 + x2 + 1))(1− txy2)
.

The only minimal CP is (1, 1, 1/3). Two terms in the denominator
vanish at this point! This means we are no longer in the “smooth”
case. Since the main diagonal is “generic” we are able to take two
residues.
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Positive Drift cont.

sn ∼ 1

(2πi)3

∫
|x |=1

∫
|y |=1−ϵ
|t|=1/3−ϵ

F (x , y , t)
dydt

yn+1tn+1

 dx

xn+1

∼ 1

2πi

∫
N

(x2 − x + 1)(1 + x)

x(x2 + 1)
(x + 1 + 1/x)ndx

∼
√
3

2
√
π
· 3n√

n
.

Theorem (Melczer Wilson [MW19])

If S is mostly symmetric with positive drift then

sn ∼

[(
1− A(1)

B(1)

)
S(1)d/2

(2π)d/2
· 1

(a1 · · · ad)1/2

]
· S(1)n

nd/2−1/2
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Mostly Symmetric Step Set Asymptotics - Zero Drift

In the zero drift case A(1) = B(1); we expect the numerator to
vanish when z = 1.

Zero Drift

Let S = {(−1,−1), (1,−1), 2 · (0, 1)}. Then the GF is the
diagonal of

F (x , y , t) =
(1 + x)(1− 2ty2(x2 + 1))

(1− y)(1− txy(2/y + xy + y/x))(1− ty2(x2 + 1))
.

There are four minimal critical points

(1, 1, 1/4), (1,−1,−1/4), (−1,±i ,∓i).

It turns out the contribution from the last three CPs is negligible,
and only the first matters. Two terms in the denominator vanish,
but this time the main diagonal is “non-generic”, and so we are
only able to take one residue.
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Zero Drift cont.

sn ∼ 1

(2πi)3

∫
|x |=1

∫
|y |=1−ϵ
|t|=1/4−ϵ

F (x , y , t)
dydt

yn+1tn+1

 dx

xn+1

∼ 1

(2πi)2

∫
N(1)

∫
N(1−ϵ)

1 + x

2x2y
· 2x − y2(1 + x2)

1− y
S(x , y)ndxdy .

We cannot take any more residues, and must use saddle-point
techniques. Note that at x = y = 1 both the numerator and

denominator of P(x , y) = 2x−y2(1+x2)
1−y vanish. One can carefully

show that P(x , y) has leading term equal to 4, with other terms
contributing a negligible amount to asymptotics. Thus

sn ∼ 4

(2πi)2

∫
N

1 + x

2x2y
S(x , y)ndxdy ∼ 4n

n
· 2

√
2

π
.
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Dealing with this tricky term gives us the following result.

Theorem (K. Melczer [KM24])

Suppose S is a mostly symmetric step set with zero drift. Let sn be
the number of walks of length n using S that remain in Nd . Then

sn ∼

[
|S |d/2

πd/2(a1 · · · ad)1/2

]
· |S |

n

nd/2

where aj is the number of steps in S that have j-th coordinate 1.
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Higher Order Terms

We can find the dominant term for zero drift walks. What about
higher order terms?

Need to get more terms in the expansion of P(x , y).

One can show

1

(2πi)2

∫
N(1)

∫
N(1−ϵ)

1 + x

2x2y
· 2x − y2(1 + x2)

1− y
S(x , y)ndxdy

∼ 1

(2π)2

∫
K+i(0,ϵ)

(
4 +

is2

t

)
e−n(s2/4+t2/2)dsdt

∼4n

n
· 2

√
2

π
+

4n

n3/2
· 1√

π
.
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Conclusion

To find the higher order asymptotic terms of fn we need to be able
to evaluate integrals of the form∫

K+iϵ

A(z)

zk
exp

[
−nϕ(z)

]
dz.

This is a whole other can of worms.

Fin.
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